

ISSN 0126 - 5539 PP2509/07/2011(028111)

PERSATUAN GEOLOGI MALAYSIA

WARTA GEOLOGI

NEWSLETTER of the GEOLOGICAL SOCIETY OF MALAYSIA

Jilid 36 No. 2 APRIL–JUNE 2010 Volume 36 No. 2

MAJLIS (Council) 2010/2011

PRESIDEN (President):

NAIB PRESIDEN (Vice President):

SETIAUSAHA (Secretary):

PENOLONG SETIAUSAHA (Assistant Secretary):

BENDAHARI (Treasurer):

PENYUNTING (Editor):

PRESIDEN YANG DAHULU (Immediate Past President):

AHLI-AHLI MAJLIS (Councillors):

Joy Jacqueline Pereira

Mazlan Madon

Mohd Rozi Umor

Ling Nan Ley

Ahmad Nizam Hasan

Lau Yin Leong

Yunus Abdul Razak

Abd. Rasid Jaapar

Anil Nair

Gan Lay Chin

Ng Tham Fatt

Nur Iskandar Taib

Nicholas Jacobs

Samsudin Hj Taib

Tan Boon Kong

JAWATANKUASA PENYUNTING (Editorial Committee)

Lau Yin Leong (Chairman)

Anna Lee

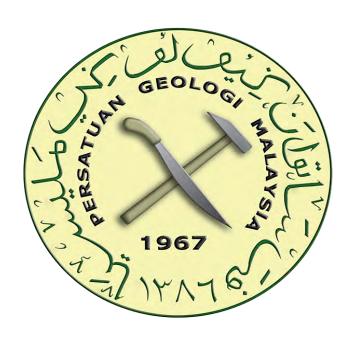
Ng Tham Fatt

Sharifah Nur Eli Diyana Syed Ismail

The Society was founded in 1967 with the aim of promoting the advancement of earth science particularly in Malaysia and the Southeast Asian region. The Society has a membership of about 600 earth scientists interested in Malaysian and other Southeast Asian region. The membership is worldwide in distribution.

Warta Geologi (Newsletter of the Geological Society of Malaysia) is published bimonthly by the Society. Warta Geologi covers short geological communications and original research, as well as reports on activities and news about the Society. It is distributed free-of-charge to members of the Society. Further information can be obtained from:

GEOLOGICAL SOCIETY OF MALAYSIA


c/o Department of Geology, University of Malaya 50603 Kuala Lumpur, MALAYSIA

Tel: 603-7957 7036 Fax: 603-7956 3900 E-mail: geologicalsociety@gmail.com

URL: www.gsm.org.my

Cover photo by Franz L. Kessler (Curtin University, Miri) (consolation prize winner of GSM photo competition 2009) Kelalan clastics at the Baram River – Intensely folded deep marine clastics of the Rajang Group, Long Lama, Sarawak

PERSATUAN GEOLOGI MALAYSIA GEOLOGICAL SOCIETY OF MALAYSIA

44TH ANNUAL GENERAL MEETING & ANNUAL REPORT 2009

23RD APRIL 2010

EASTIN HOTEL, PETALING JAYA, SELANGOR

AGENDA FOR THE 44th ANNUAL GENERAL MEETING

23rd April 2010, Eastin Hotel, Petaling Jaya, Kuala Lumpur

- 1. Welcoming Address by the President for Session 2009/2010
- 2. Confirmation of Minutes of 43rd AGM that held on 24th April 2009
- 3. Matters arrising
- 4. Annual Report for Session 2009/2010
 - President's Report
 - Secretary's Report
 - Editor's Report
 - Treasurer's and Honorary Auditor's Reports
- 5. Election of Honorary Auditor
- 6. Other matters of which written notice is submitted to reach GSM Secretariat by 19th April 2010 or by majority vote of the AGM
- 7. Announcement of New Council for 2010/2011
- 8. Presidential Address for 2010/2011

PERSATUAN GEOLOGI MALAYSIA

GEOLOGICAL SOCIETY OF MALAYSIA

MINUTES OF THE 43rd ANNUAL GENERAL MEETING (AGM)

Date: 24th April 2009 Time: 5.30pm

Venue: Geology Department, University of Malaya, Kuala Lumpur

Members Present

1.	Tan Boon Kong	12.	Ir Wan Anuar Ibrahim
2.	Nicholas Jacob	13.	Samsudin Hj Taib
3.	Lee Chai Peng	14.	Jasmi Ab Talib
4.	Malek Musa	15.	Askury Abd Kadir
5.	Yip Foo Wang	16.	Kamal Roslan Mohamed
6.	Ahmad Nizam Hasan	17.	K. Narayanamoorthy
7.	Yunus Abdul Razak	18.	C. S. Hutchison
8.	Ng Tham Fatt	19.	Syed Haszlin Shah Syed Othman
9.	Mohd Pedro Barbeito	20.	Joy Pereira
10.	Nur Iskandar Taib	21.	Low Keng Lok
11.	Gan Lay Chin	22.	Abd Rashid Jaafar

The President of Geological Society of Malaysia and Chairman of the AGM, Dato' Yunus Abdul Razak, called the meeting to order at 5:30pm when the mandatory meeting quorum was achieved. The President welcomed the members to the AGM and thanked them for fervently supporting the GSM activities.

1. Adoption of Agenda

The Chairman tabled the following agenda to the AGM for Acceptance:

- 1. Welcoming Address by the GSM President 2008/2009 and Adoption of Agenda
- 2. Confirmation of Minutes of the 42nd AGM held on 25th April 2008
- 3. Matters arising
- 4. Annual Reports 2008/2009
 - President's Report
 - Secretary's Report
 - Editor's Report
 - Treasurer's and Honorary Auditor's Reports
- 5. Election of Honorary Auditor
- 6. Other Matters of which written notice was submitted to reach GSM Secretariat by the 20th April 2009 or by majority vote of the AGM
- 7. Announcement of New Council for 2009/2010
- 8. Presidential Address

The agenda was unanimously accepted.

2. Confirmation of Minutes of the Previous AGM

The Minutes of the 42nd AGM were tabled for confirmation. As there was no amendment raised, Mr. Askury Abd Kadir proposed that the minutes be confirmed and this was seconded by Mr. Nicholas Jacob.

3. Matters Arising

There was no matter raised by the AGM.

4.0 Annual Reports 2008/2009

4.1 President's Report

The President tabled the President's Report (Appendix 1). Mr. Tan Boon Kong proposed that the President's Report be accepted and this was seconded by Mr. Nicholas Jacob.

4.2 Secretary's Report

The Secretary tabled the Secretary's Report (Appendix 2). The AGM discussed the following matters:

- a. Prof. Hutchison suggested that GSM should arrange transport for members to come to PGCE as a show of the society's encouragement to the petroleum industries.
- b. Prof. Lee Chai Peng suggested that the secretariat should write to the heads of the Geology Departments of various Institutions to nominate candidates for the Best Student Award. The AGM also suggested that the Young Geoscientist Award should be handled by the Working Group on Promotion of Geoscience & Young Geologists.
- c. Mr. Tan Boon Kong pointed out that the IGM should be listed as a co-organizer for the technical talks.
- d. Mr. Askury Abd Kadir expressed concern with regards to the strategies for getting back NPL. The Treasurer told the AGM that advisory notes seeking the repayment of the NPL had been published in Warta Geologi. The AGM proposed that the names of the defaulters be posted in the coming issue.

Mr. Tan Boon Kong proposed that the Secretary's Report be accepted and this was seconded by Prof. Hutchison.

4.3 Assistant Secretary's Report

The Chairman tabled the Assistant Secretary's Report (Appendix 3) on behalf of the Assistant Secretary.

4.4 Editor's Report

The President informed the AGM that the Editor had sent his apology for not being able to be present at the AGM. The President tabled the Editor's Report (Appendix 4) on behalf of the Editor. The AGM was told several issues of the Warta Geologi were unduly delayed as the editor was frequently away. The AGM was also informed that the Council had decided that Warta Geologi will now be published quarterly.

Prof. Hutchison questioned the relevance of the article on Mud Volcano in Bulletin 54 for it was not related to the local scenario. He further cautioned the Editor to scrutinise the articles' relevance before publishing them. The AGM however had adopted the notion of accepting all related geology articles of international and regional scenarios as the Editor was always faced with difficulty in obtaining sufficient paper contributions.

4.5 Treasurer's and Honorary Auditor's Report

The Treasurer tabled the Treasurer's and Honorary Auditor's Report (Appendix 5). Dr. Kamal Roslan proposed that the Treasurer's and Honorary Auditor's Report be accepted and this was seconded by Prof. Dr. Joy Pereira.

5. Election of Honorary Auditor

The AGM unanimously agreed to elect S.F. Lee & Co as the Honorary Auditor for the year 2009.

6. Other Matters

6.1 GSM representative for the northern region

The AGM decided not to consider the suggestion by Mr. Askury Abd Kadir with regard to having a GSM representative for the northern region.

6.2 Appreciation of Ms Anna

The President announced to the AGM that in appreciation of the excellence and faithful services rendered by Ms Anna to the Society, the Council had agreed to award her with a sum of RM 2,000.00 and a token of appreciation.

6.3 Appreciation of Council Members

On behalf of the Society, the President presented tokens of appreciation to 2 previous Council members: Mr. Jasmi Ab Talib and Dr. Samsudin Taib who had stepped down.

7. Announcement of New Council for 2009/2010

The Secretary informed the AGM that nominations were called to fill the posts of President, Vice President, Secretary, Assistant Secretary, Treasurer, Editor and 2-year Councillors (4). However, at the close of the said nomination, election procedure was not executed for only a single nominee was received for each of the posts called. Hence the new Council was duly formed as in the followings. One 1-year Councillor post was left vacant however, as the Councillor, Mr. Ling Nan Ley was elected to the Assistant Secretary post.

President : Yunus Abdul Razak (JMG)

Vice-President : Joy Pereira (UKM)
Secretary : Mohd Rozi Umor (UKM)
Assistant Secretary : Ling Nan Ley (JMG)

Treasurer : Ahmad Nizam Hasan (Geo Solution Resources)

Editor : Lau Yin Leong (Ginn-M Corp. SB)

Councillors (1 year) : Gan Lay Chin (Freelance)

Abd. Rashid Jaafar (Asian Geos Sdn. Bhd.)

Kamal Roslan Mohamed (UKM)

Vacant

Councillors (2 years) : Tan Boon Kong (Freelance)

Nur Iskandar Taib (UM) Ng Tham Fatt (UM)

Mazlan Madon (Petronas Research Sdn. Bhd.)

Immediate Past President : Lee Chai Peng (UM)

8. Presidential Address

The newly elected President Dato' Yunus Abdul Razak thanked the members for supporting the new Council and urged all the members to continue to give un-wavered support to the Society especially by participating in the Society's activities in order to bring the Society to greater heights. He also pledged to the AGM that the new Council would pursue new ideas and resources to uplift the Society's credentials like by forging smart partnership with those in the freelance.

The AGM was adjourned at 7.30pm.

JASMI AB TALIB Secretary 2008/2009

3 June 2009

PRESIDENT'S REPORT 2009/2010

The past session has been eventful especially with the successful revival of GEOSEA after a lapse of almost 8 years. The 11th Regional Congress on Geology, Mineral and Energy Resources of Southeast Asia (GEOSEA 2009) was held in Kuala Lumpur, Malaysia from 8 – 10 June 2009. More than 200 from the geoscience fraternity, both locally and abroad had attended the Congress. The GEOSEA 2009 marks the conclusion of the United Nations' International Year of Planet Earth (IYPE), 2007-2009. The Geological Society of Thailand graciously accepted to host GEOSEA XII in 2012. Since the GEOSEA 2009, we have been maintaining close communication with the Geological Society of Thailand.

The existence of a Permanent Secretariat for GEOSEA was deemed necessary in order to foster the spirit of cooperation between geoscientists from the core countries and those interested in the geology, mineral and energy resources of Southeast Asia and neighbouring areas. Malaysia was unanimously agreed by the member countries to be the first host of the GEOSEA Secretariat. Malaysia will act as the Secretariat for two terms. The Secretariat is expected to facilitate the planning and organisation of GEOSEA activities to achieve its main objectives for the benefit of all member countries.

The Petroleum Geology Conference & Exhibition (PGCE) 2010, organized together with PETRONAS with the theme 'Crafting Ideas for Challenging Discoveries', was held at Kuala Lumpur Convention Centre from 29 – 30 March. Despite the economy slowdown, it is heartening to witness the huge success of PGCE 2010, with a record breaking number of over one thousand six hundred participants, many were from overseas. The sponsorship and participation in the exhibition from the oil and gas industries were both overwhelming and exhilarating.

A delegation from American Association of Petroleum Geology (AAPG) led by Dr. Richard D. Fritz, Executive Director, paid a courtesy visit to GSM on the 28th January 2010. The AAPG delegation sought to develop opportunity to collaborate with GSM that would possibly bring mutual benefits to both organizations for the furtherance of geoscience development. AAPG wished to offer its education programme and student programme which GSM members could participate. AAPG also wished to seek the views and advice from their Malaysian counterparts on the digitization and marketing of the publications of the Geological Society of Malaysia, and also on the hosting of a Regional Geoscience Conference (Geo-Asia) focusing on petroleum at every odd year. GSM expressed our willingness to maintain the contact that was established and we look forward to the possibility of collaboration that could benefit the members.

Meanwhile, I have the pleasure to inform all the concerned members that the Regulation that was formulated for the Geologists Act 2008 (Act 689) which was finally passed by the Parliament on 15 July 2008, has been finalized and approved by the Attorney-General. The Regulation is now waiting for the final approval of the Honourable Minister of the Natural Resources and Environment Malaysia who would determine and set the date of enforcement of the Act. I sincerely hope that the enforcement of the Act would enhance the scope and quality of geological practices thereby ensuring greater and more effective use of geoscience knowledge in contributing towards the nation building. As I approach the end of my term as the President of GSM of which I am greatly honoured to be given the opportunity to shoulder for the past 3 consecutive sessions, I am heartened by the continuing good support and cooperation extended to me throughout my tenure. As the out-going President, I want to reiterate that there is still a lot of room for GSM to improve. I want to see GSM to continue to grow from strength to strength, bringing greater awareness to the general public of the contribution of Geoscience in the nation building and playing its role in enhancing the competency of the professionals.

Last but not least, I would like to express my sincere thanks to all Council members, chairmen of various working groups, conference organizers and Secretariat staff, Ms. Anna for their continuing hard work and pro-active support extended to me during the course of the session, which I am most indebted.

Dato' Yunus Abdul Razak

President

SECRETARY'S REPORT 2009

1.0 Introduction

On behalf of the Council of the Geological Society of Malaysia (GSM), it is my great pleasure to present the 44th Annual Secretary's Report for session 2009/2010.

2.0 The Council

The new Council for the Geological Society of Malaysia (GSM) for 2009/2010 session presumed their office after the 43rd AGM on 24th April 2009.

2.1 Council Members

The Council Members for 2009/2010 are as follows:

President: Yunus Abdul Razak (JMG)

Vice President: Joy Pereira (UKM)
Hon. Secretary: Mohd Rozi Umor (UKM)
Asst. Secretary: Lin Nan Ley (JMG)

Treasurer: Ahmad Nizam Hassan (Geo Solution Resources)
Editor: Lau Yin Leong (Ginn-M Corporation Sdn Bhd)

Council Members:

(2009/2010) Gan Lay Chin (Freelance)

Kamal Roslan Mohamed (UKM) Abd Rasid Jaafar (Asian Geos Sdn Bhd)

Nicholas Jacob (JMG)

(2009/2011) Mazlan Madon (Petronas)

Tan Boon Kong (Freelance)

Nur Iskandar Taib (Universiti Malaya) Ng Tham Fatt (Universiti Malaya)

Imm. P/ President: Lee Chai Peng (Univesiti Malaya)

2.2 Council Meetings

During the 2009/2010 session, 6 council meetings were held. The attendances of council members are presented in Table 1. All meetings conducted at the meeting room of the Department of Geology, University of Malaya, started at 5.30 pm.

3.0 Society Structure

The Society's stakeholders are the members of the Society led by an elected Council. The Council's main functions are to set directions to promote the advancement of geosciences, endorse activities and provide guidance for the execution of the activities of the Society.

The Council is assisted by the Secretariat, the one and only Ms Anna Lee. The Secretariat assisted the Society in the administration of day-to-day activities of the Council, Working Groups and State Representatives.

The Council is also supported by 5 Working Groups and State Representatives. The Working Groups' main function is to promote advancement and exchange of knowledge in specific geoscience areas. The State Representatives' main function is to promote geosciences and implement the mission of the society within their geographical area. The Organisation Chart of the Society is presented in Figure 1.

Table 1: Attendance of Council Members at Council Meeting

NAME	25/5/10	10/7/10	7/10/10	2/12/10	19/01/10	24/03/10
Yunus Abd Razak	/	/	/	/	/	/
Joy J. Pereira	/	/		/	/	/
Mohd Rozi Umor		/	/	/	/	/
Ahmad Nizam Hasan	/			/	/	/
Lau Yin Leong	/	/		/		
Ling Nan Ley	/	/	/	/	/	/
Tan Boon Kong	/		/	/	/	
Gan Lay Chin	/	/		/		/
Nur Iskandar Taib	/	/	/	/	/	/
Mazlan Madon	/	/		/	/	
Ng Tham Fatt	/	/	/		/	/
Abd Rasid Jaafar	/	/	/	/		
Kamal Roslan Mohamed		/	/		/	/
Nicholas Jacob						
Lee Chai Peng	/				/	

Note: / = present, 0 = absent with apology, + = New appoint as council member start attend on second meeting, X = sabbatical in

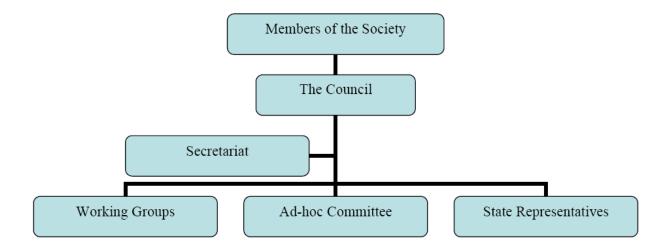


Figure 1: Organisation Chart of the Society

3.1 Working Groups

In March 1987, five (5) Working Groups were set up namely (1) Working Group on Engineering Geology and Hydrogeology, (2) Working Group on Economic Geology, (3) Working Group on Stratigraphy and Sedimentology, (4) Working Group on Structural Geology and Tectonics and (5) Working Group on Petroleum Geology. Then in 1996, (6) The Working Group on Environmental Geology was formed. After that another 4 working groups were set up namely (7) The Working Group for the Promotion of Geosciences, (8) Working Group on Geophysics and (9) Working Group for Young Geoscientists was formed in 1998, 1999 and 2000 respectively. (10) The Working Group on Website was formed in 2003.

In the 2008/2009 session, the Council noted that many of the Working Groups were not active, and it was difficult to get volunteers to chair these working groups. The Council agreed to combine a few working groups, leaving only 5 Working Groups as follows;

No	New Working Group	Previous Working Group	Chairman	
1	Working Group on Engineering Geology, Hydrogeology &	Working Group on Engineering Geology & Hydrology	En. Tan Boon Kong	
	Environemental Geology	Working Group on Environemental Geology	En. Abd. Rasid Jaafar	
2	Working Group on Promotion of Geoscience & Young	Working Group on Promotion of Geoscience	En. Abd. Rasid Jaafar	
2	Geologists	Working Group on Young Geologists	En. Abd. Rasid Jaaiar	
3	Working Group on Mineral Resources	Working Group on Economic Geology	En. Lau Yin Leong	
	Working Group on Regional Geology	Working Group on Structural Geology & Tectonics		
4		Working Group on Sedimentology and Stratigraphy	Dr. Kamal Roslan Mohamed	
		Working Group on Petroleum Geology		
5	Working Group on Geophysics	Working Group on Geophysics		

The Council also decided to retain the Chairman of each working group for the session 2009/2010, but only managed to get four Chairs (Working Group 1 to 4).

3.2.1 Working Group on Engineering Geology, Hydrology & Environmental Geology (WGEG, H&EG)

This working group was chaired by Mr. Tan Boon Kong in the 2009/2010 session. There were six activities conducted in this session, and main annual event organized was Malam Jurutera 2009, Malam Air Tanah 2009 and Chairman Lecture No. 15. The Working Group also organized a number of technical talks (Please refer to the list of activities in Table 3).

3.2.2 Working Group on Promotion of Geoscience and Young Geologists (WGPG&YG)

This working group was chaired by Mr. Abd Rasid Jaafar in the 2009/2010 session. They conducted the GSM Photographic Competition 2009.

3.2.3 Working Group on Mineral Resources

This working group was chaired by Mr. Lau Yin Leong in the 2009/2010 session. Due to heavy commitments as the Editor, the Chairman did not manage to arrange any activities.

3.2.4 Working Group on Regional Geology (WGRG)

This working group was chaired by Ass. Prof. Dr. Kamal Roslan Mohamed in the 2009/2010 session. There were two activities conducted, "Seminar Negeri Kelantan" and a technical talk by Prof. Dr. Aye Ko Aung (Please refer to the list of activities in Table 3).

4.0 Representatives to outside body

The Society was represented in two (2) outside bodies i.e. The Confederation of Scientific and Technological Association of Malaysia (COSTAM) and the American Association of Petroleum Geology (AAPG).

4.1) COSTAM

The Society was represented by the President, Secretary, Assistant Secretary and two Council Members. The President was elected as a Council Member of COSTAM.

4.2) AAPG House of Delegate

The Society was represented by Ass. Prof. Hj Askury Abd. Kadir of University Teknologi Petronas with Dr. Mazlan Madon of Petronas Group Research as alternative representative.

5.0 Membership

As at 1st April 2010, the total number of members in the Society stands at 539 and this is an increase of about 25% over the previous year's total of 431. There is an increase of 20% for life members. The major decrease is for full members by about 30 % this year. However, this decrease was balanced by an increase in student members, which showed an increase of 200% from 40 members up to 155 members. Table 2 presents the breakdown of the type of membership and their geographical breakdown.

COUNTRY	Full	Life	Inst.	Student	Associate	Honorary	Total 2009	Total 2008
Australia	-	15	-	-	-	-	15	18(-3)
Brunei	-	1	-	_	-	-	1	1
Canada	-	3	-	-	-	-	3	2(+1)
Europe	1	11	-	1	-	-	13	15(-2)
Hong Kong	-	1	-	-	-	-	1	1
Indonesia	-	8	-	-	-	-	8	9(-1)
Japan	-	3	-	-	-	-	3	3
Africa	-	1	-	_	-	-	1	1
Middle East	-	4	-	-	-	-	4	4
Philippines	-	2	-	-	_	-	2	2
Singapore	2	7	1	-	1	-	11	9(+2)
Thailand	-	3	-	-	-	-	3	3
USA	1	8	-	-	-	-	9	8(+1)
Malaysia	115	183	4	154	6	3	469	352
TOTAL 2009	119	250	5	155	7	3	539	
TOTAL 2008	174	205	4	40	4	4		431

Table 2: Breakdown of Membership.

6.0 Activities

The Society has successfully organized two major symposiums, (1) The Eleventh Regional Congress on Geology, Mineral and Energy Resources of Southeast Asia 2009 (GEOSEA 2009) and (2) The Petroleum Geology Conference and Exhibition 2010 (PGCE 2010). GSM also participated as the collaborator for the "Persidangan Geologi Warisan Malaysia", which was hosted by the Geological Heritage Group of Malaysia. Through the working groups, four events were held in this session involving many participants. They were (1) Malam GEOSEA Re-runs, (2) Malam Jurutera 2009, (3) Malam Air Tanah 2009 and (4) Seminar Negeri Kelantan.

The National Geoscience Conference (NGC) for 2009 was not conducted because of the GEOSEA 2009. Another annual event was the GSM Photographic Competition 2009 handled by the Working Group of Promotion of Geoscience.

6.1 The Eleventh Regional Congress on Geology, Mineral and Energy Resources of Southeast Asia 2009 (GEOSEA 2009)

The Eleventh Regional Congress on Geology, Mineral and Energy Resources of Southeast Asia 2009 (GEOSEA 2009) was successfully held from 8 to 10 June 2009 at Istana Hotel, Kuala Lumpur with strong support by the Minerals and Geoscience Department.

More than 150 participants were registered for the conference. The participation was from Thailand, Indonesia, the Phillipines and Malaysia.

6.2 The Petroleum Geology Conference and Exhibition 2010 (PGCE 2010)

The PGCE 2010 was jointly organized by the Society and PETRONAS and held on 29-30th March 2010 at the KL Convention Centre, Kuala Lumpur. The opening was officiated by Mr. Ramlan Abdul Malek, the Vice President, E&P Business PETRONAS Berhad.

The event attracted a crowd of about 1,600 participants (including exhibitors). A total of four key note addresses were delivered by experts on 'Exploration Industry', 'Petroleum Geology', 'Petroleum Geophysics' and 'New Technology'. 46 technical papers were received and selected for oral presentation and another 58 technical paper received as poster presentations.

The Council wishes to convey its greatest appreciation to each and every member of the Organizing Committee for their untiring efforts under the excellent leadership of Mr. Azhar Yusof. The generous support of PRAM and PCSB Management in Petronas contributed to a job very well done professionally. Thanks also to all donors and sponsors who helped make the PGCE 2010 a success.

6.3 Malaysian Geological Heritage Conference (Persidangan Geologi Warisan Malaysia)

This Conference was jointly organized by the Society and Working Group of Geological Heritage of Malaysia based in Universiti Kebangsaan Malaysia. It was held on 14 to 19 October 2009 at the PERSADA, Johor Bharu.

The event involved about 150 participants from local universities and the Minerals and Geoscience Department. A total of 16 technical papers were selected for oral presentation and another 19 as poster presentations.

6.4 GSM Photographic Competition 2010

The results for the 2009 Photo Competition will be announced after the AGM 2010.

6.7 Others

During this session, the Council with cooperation of the Working Groups, and other organization were able to organize several technical talks and seminars. The details of these activities are presented in Table 3.

Table 3: Summary of other activities

Date	Nature	Activity/Topic	Speaker	Organiser
27/7/09	Syarahan	Effect of the financial crisis on the	Mr. Teoh Lay Hock (ex-	GSM
	Persaraan	Global Mining Industry	JMG)	
14/8/09	Talk	Malam GEOSEA Re-runs	i. Mr. Zakaria Mohamad	GSM &
		i. The Canada Hill Landslide, Miri, Sarawak	(JMG)	IGM
		ii. The Case Study on Limestone Cliff in	ii. Mr. ChowWeng Sum	
		Tambun, Perak	(UTP)	
11/11/09	Talk	Malam Jurutera 2009	i. Ir. Dr. Toh, C.T.	GSM &
		i. Cut Slope Stability	ii. Ir. Neoh, C.A	IGM
		ii. Case Histories of Soil Nailed Slopes	iii. Ir Liew, S.S.	
		iii. Role of Geotechnical Engineer in Civil		
		Engineering Work in Malaysia		
21/12/09	Talk	Malam Air Tanah 2009	i. Dr. Ismail Yusoff (UM)	GSM &
		i. The Application of Numerical Technique in	ii.Dr. Saim Suratman	IGM
		Groundwater Management	(NAHRIM)	
		ii. The Impact of Landfills to Groundwater	iii. Tuan Hj Mohd Hatta	
		Quality in Selangor	Abd Karim (JMG)	
		iii. Some Highlight of Groundwater		
		Development and Management in Malaysia		
22/1/10	Talk	Chairman Lecture No 15	Mr. Tan Boon Kong	GSM
		Engineering Geology – 3 recent (2009) Case	_	
		Studies		
22/2/10	Talk	Stratigraphic Relationship and Correlation of the	Prof. Dr. Aye Ko Aung	GSM &
		Paleozoic unit of Myanmar and Malaysia		UKM
31/03/10	Talk	Professional Code of Conduct	Dato' Paduka Ir Hj	GSM &
			Keizrul Abdullah	IGM
			(IEM)	

7.0. GSM Awards and Loan

GSM has set up various awards for members and a loan fund for student members as follows:

7.1 Honorary Membership

No nomination was received.

7.2 Student Loan Fund

To help the financially disadvantaged final year university students with their theses preparation, a Student Loan Fund was created after the 1973 AGM with an initial allocation of RM10,000.00. Unfortunately, like other loan funds in the country, the GSM Loan Fund also suffered from non-performance loan (NPL) repayment. The Council will attempt to collect repayments from 10 ex-students.

7.3 Best Student Award

No nomination was received

7.4 Young Geoscientist Award

No nomination was received.

7.5 Geoscientist Award

No nomination was received

8.0 Guest Editors

The Council has decided to appoint Guest Editors for publication of special issues of the Bulletin of GSM. Guest Editors will be responsible for collecting and reviewing technical papers. They are expected to provide a progress report to the Council and complete their issue within 6-9 months of their appointment. Prof. Dr. Shafeea Leman has been appointed as Guest Editor for the special issue on Geological Heritage of Malaysia.

9.0 The Editorial Board

The Council proposed to establish an Editorial Advisory Board to manage the publication especially Bulletin of the Society in order to up-grade and follow the international requirement for listing in the Web of Science. The TOR will be prepared by Prof Dr. Joy Pereira. The Council also agreed to create the post for (1) Editor in Chief, (2) Managing Editor and (3) Production Editor.

10.0 GSM-Student's Geological Club Collaboration

The Council has agreed to collaborate and assist in activities of Geological Clubs in universities. The Clubs must have 25 Student Members. The Chairman, Secretary and Treasurer of the Geological Club must be Student Members of the Society. The Club must prepare a working paper for their activities, in line with society's objective and submit it to the Council for acceptance.

For the year 2009, the Society has already given RM 650.00 to the Geological Club of UKM for the Career Day and Symposium.

11.0 The National Geosience Conference 2010

This event will be held on 11 to 12 June 2010 at the Grand BlueWave Hotel, Shah Alam. This Conference is chaired by Mr. Zakaria Mohamad (the Director of Selangor Minerals and Geoscience Department). A forum on the Geologist Act will be organized at the end of the Conference.

12.0 The Book "Geology of Peninsular Malaysia"

The Council agreed that a complimentary copy of this book should be sent to Universiti Malaya (UM), Universiti Kebangsaan Malaysia (UKM), Universiti Malaysia Sabah (UMS), Universiti Teknologi Petronas (UTP), Universiti Sains Malaysia (UMS), Universiti Malaysia Kelantan (UMK) and Universiti Sains Malaysia Cawangan Nibong Tebal (UMS Nibong Tebal branch).

This decision has been approved by the Head of Geology Department, Universiti Malaya. The Geology Department supported part of the publication cost of the book and their approval was requested as a courtesy for this support.

13.0 Acknowledgement

As a final note, the Society would like to extend its utmost appreciation to all the individuals and organizations that have helped in one way or another in the organizing of the Society's activities during this session. Special thanks goes to the Head and staff of the Geology Department, University of Malaya for the use of its premises for most of the Society's meetings and activities, and also the Secretariat, UKM, USM, UMS, JMG and Petronas Bhd and last but not least all members for their advice, guidance and support throughout the year.

Thank you.

Prepared by,

DR. MOHD ROZI BIN UMOR Secretary 2009/2010

ASSISTANT SECRETARY'S REPORT 2009

The sales of the Society publications and the list of organizations and institutions that were exchanging publications with GSM are presented in the following tables.

Sales and stock of publications for 2009

Publications	Sales 2009	Stock remaining by end of 2008	Stock remaining by end of 2009
Bulletin 2	0	191	191
Bulletin 3	2	175	173
Bulletin 4	1	91	90
Bulletin 6	1	418	417
Bulletin 7	1	264	263
Bulletin 13	0	21	21
Bulletin 17	0	7	7
Bulletin 18	1	7	6
Bulletin 19	4	395	391
Bulletin 20	3	350	347
Bulletin 21	2	159	157
Bulletin 22	4	223	219
Bulletin 23	3	236	233
Bulletin 24	8	397	389
Bulletin 25	3	105	102
Bulletin 26	3	204	201
Bulletin 27	5	81	76
Bulletin 28	3	122	119
Bulletin 29	7	125	118
Bulletin 30	1	124	123
Bulletin 31	3	124	121
Bulletin 32	4	105	101
Bulletin 33	2	260	258
Bulletin 34	2	79	77
Bulletin 35	0	0	0
Bulletin 36	9	126	117
Bulletin 37	2	175	173
Bulletin 38	8	245	237
Bulletin 39	0	216	216
Bulletin 40	5	103	98
Bulletin 42	3	58	55
Bulletin 43	2	156	154
Bulletin 44	5	162	157
Bulletin 45	3	127	124
Bulletin 46	0	24	24
Bulletin 47	1	75	74
Bulletin 48	0	53	53

5	339	334
		J J T
2	358	356
3	263	260
8	259	251
1	351	350
1	308	307
465	800	335
0	4	4
6	41	35
6	174	168
3	265	262
46	120	74
0	9	9
0	176	176
1	1	0
10	324	314
5	937	932
22	998	976
163	1500	1337
848	13,010	12,162
	3 8 1 1 465 0 6 3 46 0 0 1 10 5 22 163	3 263 8 259 1 351 1 308 465 800 0 4 6 41 6 174 3 265 46 120 0 9 0 176 1 1 10 324 5 937 22 998 163 1500

^{*}Distributed free to all 2009 member

List of organizations and institutions that are exchanging publications with GSM

1.	New South Wales Dept of Mineral Resources	Australia
2.	Geologica Belgica a.s.b.I	Belgium
3.	Ministry of Development	Brunei
4.	University of Geosciences	China
5.	The Episode	China
6.	Nanking Institute of Geology	China
7.	National Geological Library	China
8.	Peking College of Geology	China
9.	SOPAC Secretariat	Fiji
10.	Suomalaineu Tiedeakatemia	Finland
11.	Freie Universitat Berlin	Germany
12.	National Museum of Natural History	Holland
13.	Geological Society of Japan	Japan
14.	Dept Mineral & Planetary Science, Hiroshima	Japan
15.	Museum of Nature & Human Activities	Japan
16.	National Science Museum	Japan
17.	Natural History Museum and Institute	Japan
18.	Institute of Geosciences	Japan
19.	Geological Society of Korea	Korea
20.	Dewan Bahasa dan Pustaka	Malaysia
21.	Jabatan Mineral dan Geosains, Ipoh	Malaysia
22.	Jabatan Mineral dan Geosains, Kuching	Malaysia

23.	Jabatan Mineral dan Geosains, Kota Kinabalu	Malaysia
24.	Kementerian Dalam Negeri	Malaysia
25.	Perpustakaan Negara Malaysia	Malaysia
26.	Library Petronas Berhad	Malaysia
27.	Pusat Sumber Maklumat Negeri Sarawak	Malaysia
28.	Perpustakaan Tun Sri Lanang, UKM	Malaysia
29.	Program Geologi, UKM	Malaysia
30.	Library, UM	Malaysia
31.	Library, USM	Malaysia
32.	Malaysian Institute of Nuclear Technology	Malaysia
33.	Library of Congress, USA Embassy	Malaysia
34.	Institute of Ecological & Nuclear Science	New Zealand
35.	National Library	Singapore
36.	Central Geological Survey	Taiwan
37.	American Museum of Natural History, New York	USA
38.	CIGESE Library	USA
39.	Oklahoma Geological Survey	USA
40.	US Geological Survey	USA
41.	University of Kansas	USA
42.	AAPG Foundation Library	USA
43.	Faculty of Agriculture & Natural Resources, Africa University	Zimbabwe

Thank you Prepared by

LING NAN LEY Assistant Secretary 2009/2010

EDITOR'S REPORT

Starting from the year 2009, the frequency of publication of Warta Geologi has been reduced from bimonthly (six issues per year) to quarterly (four issues per year). All four issues for 2009 were published, albeit some delays.

Only one volume of Bulletin was published in the year 2009 (Volume 55). We managed to get the Bulletin indexed by Scopus, the Elsevier Bibliographic Database from 2008 onwards. We are working towards getting Bulletin indexed by the Institute for Scientific Information (ISI).

We would like to thank authors for their contribution and reviewers for their time and efforts to improve the papers.

Prepared by

Dr. NG THAM FATT On behalf of Editor

HONORARY TREASURER'S REPORT 2009

For the Financial Year 2009, the society's posted a financial surplus of RM 201,417.00 compared to deficit of RM 163,900.00 recorded for Financial Year 2008. The net current asset has increase from RM 431,155.00 for 2008 to RM 627,902.00 for year 2009.

Operating revenue posted high compared to year 2008 which is total income of RM 31,275.00 to RM 294,750.00 for year 2009. The main contributors to an increase of revenue are Subscription RM16,545.00, Sales of Geology Peninsular Malaysia by RM 18,123.00, accumulations of balance payment of Petroleum Geology Conference & Exhibition 2008 (PGCE 2008) and collection of the PGCE 2009 posted total collection of RM 249,659.00.

Total operating expenditure for Financial Year 2009 was RM 93,333.00 lowered compared to RM 195,175.00 for Financial Year 2008. The expenditure mainly recorded from GEOSEA 2009, printing for Bulletin and Department of Geology.

The Hon.Treasure would like to express a great appreciation to all the donors and sponsor for their contributions and supports.

AHMAD NIZAM HASSAN Hon. Treasurer

(Registered in Malaysia)

REPORT AND ACCOUNTS '31 DECEMBER 2009

S.F. LEE & CO. CHARTERED ACCOUNTANTS

(Registered in Malaysia)

REPORT AND ACCOUNTS '31 DECEMBER 2009

CONTENTS

	Page
Statement by Council	1
Statutory Declaration	2
Auditor's Report	3
Balance Sheet	4
Income and Expenditure Statement	5
Cash Flow Statement	6
Notes to Accounts	7-9

(Registered in Malaysia)

MEMBERS INFORMATION

President: Yunus Abdul Razak

Vice President: Joy J. Pereira

Hon. Secretary: Mohd Rozi Umor

Assistantt Secretary: Lin Nan Ley

Treasurer: Ahmad Nizam Hasan

Editor: Lau Yin Leong

Councillors: Tan Boon Kong

Nicholas Jacob Gan Lay Chin Abd Rasid Jaafar

Kamal Roslan Mohamed Nur Iskandar Taib Mazlan Madon Ng Tham Fatt

Immediate Past President: Lee Chai Peng

PERSATUAN GEOLOGI MALAYSIA (GEOLOGICAL SOCIETY OF MALAYSIA) STATEMENT BY THE COUNCIL

We, Yunus Abdul Razak and Ahmad Nizam Hasan, being the President and Treasurer respectively, of the Personal Geological Malaysia (Geological Society of Malaysia) do hereby state that, in the opinion of the Council, the fin statements set out pages 4 to 9 are properly drawn up in accordance with the applicable approved accounting stars on as to give a true and fair view of the state of affairs of the Persatuan Geologi Malaysia (Geological Society of Malaysia) as at 31 December 2009, and of the result and cash flow for the year ended.				
Yunus Abdul Razak President	Ahmad Nizam Hasan Treasurer			
Kuala Lumpur				
Dated:				

DECLARATION BY THE OFFICER PRIMARILY RESPONSIBLE FOR THE FINANCIAL MANAGEMENT OF THE SOCIETY

Malaysia (Geological Society of Malaysia) do solo statements set out on pages 4 to 9 are, to the best	nsible for the financial management of the Persatuan Geologi emnly and sincerely declare that the accompanying financial of my knowledge and belief correct, and I make this solemn rue and by virtue of the provisions of the Statutory Declarations
Subscribed and solemnly declared by)
the abovenamed Ahmad Nizam Hasam)
at Kuala Lumpur in Wilayah Persekutuan)
on)
Before me,	
Commissioner for Oaths	

REPORT OF THE AUDITORS TO MEMBERS OF THE

PERSATUAN GEOLOGI MALAYSIA (GEOLOGICAL SOCIETY OF MALAYSIA)

We have audited the financial statements set out on pages 4 to 9. These financial statements are the responsibility of the Council Members of the Society. It is our responsibility to form an independent opinion, based on our audit, on those financial statements and to report our opinion to you, as a body, and for no other purpose. We do not assume responsibility to any other person for the content of this report.

We conducted our audit in accordance with approved auditing standards in Malaysia. Those standards require that we plan and perform audit to obtain reasonable assurance about whether the financial statements are free of material missstatement. An audit includes examining, on a test basis, evidence supporting the amounts and disclosures in the financial statements. An audit also includes assessing the accounting principles used and significant estimates made by the Council Members. as well as evaluating the overall financial statements presentation. We believe that our audit provides a reasonable basis for our opinion.

In our opinion, the financial statements give a true and fair view of the statement of assets and liabilities of the Society as at 31 December 2009 and of its statement of income and expenditure and cash flows for the financial year ended 31 December 2009 in accordance with the MASB approved accounting standards in Malaysia.

S.F.LEE & CO. (AF 0670) Chartered Accountants

LEE SIEW FATT (1179/9/10J)
Chartered Accountant

Kuala Lumpur

Date:

PERSATUAN GEOLOGI MALAYSIA (GEOLOGICAL SOCIETY OF MALAYSIA)

(Registered in Malaysia)

STATEMENT OF ASSETS AND LIABILITIES AS AT 31 DECEMBER 2009

No	ote	2009 RM	2008 RM
FUND ACCOUNTS			
GENERAL FUND STUDENT LOAM FUND EVALUATION FORMATION WORKING GROUP FUND YOUNG GEOSCIENTIST AWARD FUND AAPG-UM STUDENT CHAPTER FUND	_	57,0653 156 48, 205 3,143 5,745	369,236 156 48,205 3,143 10,415
	_	627,902	431,155
D (11)			
Represented by:			
NON-CURRENT ASSETS			
PLANT AND EQUIPMENT 4		28,161	31,290
CURRENT ASSETS			
Inventories 5		31,935	41,042
Deposits and prepayment 6 Fixed deposits woth licensed bank 7		600	12,632
Cash and bank balances		192,908 374,298	192,908 153,283
	_	599,741	399,865
NET CURRENT ASSETS		599,741	399,865
		627,902	431,155

The accompanying notes are an integral part of these statements

PERSATUAN GEOLOGI MALAYSIA (Registered in Malaysia)

STATEMENT OF INCOME AND EXPENDITURE FOR THE YEAR ENDED 31 DECEMBER 2009

INCOME	2009 DM	2008
Future and Con-	RM	RM
Entrance fee	860	640
Fixed deposits interest income	6,018	8,601
Subscription	16,545	9,413
Sales of publications	2,945	1,493
Petroleum Geology Conference	249,659	-
Miscellaneous income	-	34
Working groups	-	214
Advertisement (Warta Geologi)	600	540
Short course		10,340
Geology of Peninsular Malaysia	18,123	
	294,750	31,275
EXPENDITURE		
Annual dinner	1,320	2,645
Annual General Meeting	-	469
Audit fee	800	800
Bank charges	246	197
Department of Geology	7,786	-
Depreciation on plant and equipment	3,129	3,624
Geosea	14,597	· -
Honorarium	22,370	20,548
Income tax	525	´-
National Geological Conference	-	8,473
PGCE	_	111,756
Photo competition	3,100	1,100
Photocopying	291	-,
Postages	3,588	3,301
Professional fee	-	300
Printing and Stationery		200
- Miscellaneous	1,030	148
- Warta Geologi	14,280	26,160
- Bulletin	11,760	33
Refreshment	662	1,955
Service tax	-	55
Speakers' account	4,280	3,112
Subscription to COSTAM	100	100
Sundry expenses		
J 1	1,978	5,695
Telefax	520	478
Telephone Travelling ownerses	971	715
Travelling expenses	-	40
Xerox		3,471
	93,333	195,175
Surplus / (Deficit) for the year	201,417	(163,900)

PERSATUAN GEOLOGI MALAYSIA (Registered in Malaysia)

CASH FLOW STATEMENT FOR THE YEAR ENDED 31 DECEMBER 2009

	2009 RM	2008 RM
Cash flows from operating activities		
Surplus / (Deficit) over expenditure for the year	201,417	(163,900)
Adjustments for:-	2.120	2 (24
Depreciation on plant & machinery Interest income	3,129	3,624
Surplus / (Deficit) before working capital	(6,018) 198,528	(8,601) (168,877)
Decrease / (Increase) in deposits and prepayment	12,032	(12,032)
Decrease / (Increase) in inventories	9,107	(29,358)
Increase in Student Fund	- (4 (70)	156
(Decrease) / Increase in AAPG-UM Student Chapter Fund Increase in Evaluation Formation Working Group Fund	(4,670)	7,835 45,625
Cash generated from / (used in) operations	214,997	(156,651)
Interest income	6,018	8,601
Net cash generated from / (used in) operating activities	221,015	(148,050)
Net increase / (decrease) in cash and cash equivalents	221,015	(148,050)
Cash and cash equivalents at beginning of the year	346,191	494,241
Cash and cash equivalents at end of the year	567,206	346,191
Cash and cash equivalents comprised of:		
Deposits held with licensed banks	192,908	192,908
Cash and bank balances	374,298	153,283
	567,206	346,191

PERSATUAN GEOLOGI MALAYSIA (Registered in Malaysia)

NOTES TO THE FINANCIAL STATEMENTS - 31 DECEMBER 2009

1. PRINCIPAL OBJECTIVES

The objective of the Society is to promote the advancement of the geological sciences in Malaysia.

2. ACCOUNTING POLICIES

(a) Basic of Accounting

The financial statements have been prepared under the historical cost convention and comply with applicable Approved Accounting Standards issued by the Malaysian Association Standards Board.

(b) Plant and Equipment

Plant and equipment is stated at historical cost less accumulated depreciation.

Depreciation on plant and equipment is computed on the straight line basis calculated to write-off the cost of the assets over their estimated useful lives. The principal annual rates used are:-

Office equipment 10% Computer 20%

The carrying values of the assets are reviewed for impairment when there is an indication that the assets might be impaired. Impairment is measured by comparing the carrying values of the assets with their recoverable amounts.

An impairment loss is charged to the income and expenditure account immediately, unless the asset is carried at revalued amount. Any impairment loss of a revalued asset is treated as a revaluation decrease to the extent of previously recognised revaluation surplus for he same asset.

Subsequent increase in the recoverable amount of an asset is treated as reversal of the previous impairment loss and is recognised to the extent of the carrying amount of the asset that would have been determined (net of amortisation and depreciation) had no impairment loss been recognised. The reversal is recognised in the income statement immediately, unless the asset is carried at revalued amount.

c) INVENTORIES

Inventories consists of compass and maps valued at the lower of cost and net realizable value

d) INCOME RECOGNITION

Membership subscription is payable annually at the beginning of the financial year. All subscriptions received during the financial year are recognised as income. Income from sale of publications is recognised upon delivery of goods. Income from organising conference is recognised on receipt basis. Fixed deposit interest income is recognised on an accrual basis.

PERSATUAN GEOLOGI MALAYSIA (Registered in Malaysia)

3.	GENERAL FUND	2009 RM	2008 RM
	At 1 January	369,236	533,136
	Surplus / (Deficit) for the year	201,417	(163,900)
	At 31 December	570,653	369,236

4. PLANT AND EQUIPMENT

		Cost		
	Balance at			Balance at
2009	1/1/2009	Additions	Disposal	31/12/2009
	RM	RM	RM	RM
Office equipment	130,155	-	-	130,155
Computer	2,596	-	-	2,596
-	132,751	-	-	32,751

_____Accumulated depreciation_____

					Net Book
	Balance at	Charge for		Balance at	Value at
	1/1/2009	the year	Disposal	31/12/2009	31/12/2009
	RM	RM	RM	RM	RM
Office equipment	99,929	3,022	-	102,951	27,204
Computer	1,532	107	-	1,639	957
	101,461	3,129	-	104,590	28,161

		Cost		
	Balance at		Balance at	
2008	1/1/2008	Additions	_Disposal_	31/12/2008
	RM	RM	RM	RM
Office equipment	130,155	-	-	130,155
Computer	2,596	-	-	2,596
-	132,751	-	-	132,751

_____Accumulated depreciation_____

					Net Book
	Balance at	Charge for		Balance at	Value at
	1/1/2008	the year	Disposal	31/12/2008	31/12/2008
	RM	RM	RM	RM	RM
Office equipment	96,571	3,358	-	99,929	30,226
Computer	1,266	266	-	1,532	1,064
	97,837	3,624	-	101,461	31,290
			·		

PERSATUAN GEOLOGI MALAYSIA (Registered in Malaysia)

	5.	INVENTORIES	2009	2008
			RM	RM
	Maps		3,482	4,031
	Compas	S	2,053	5,993
	Magazir	nes	26,400	31,018
			31,935	41,042
_				
6.	DEPOS	ITS AND PREPAYMENT	2009	2008
			RM	RM
	Deposits	3	600	600
	Prepayn	nent	-	12,032
			600	12,632

7. FIXED DEPOSITS WITH LICENSED BANK

The fixed deposits with licensed bank have a maturity of between 3 to 15 months $(2008:3\ to\ 15\ months)$. Interest rates for the deposits ranged from 3.75% to 5% $(2008:3.75\%\ to\ 5\%)$ per annum.

ANNOUNCEMENT OF NEW COUNCIL FOR 2010/2011

President: Joy J. Pereira (UKM)
Vice President: Mazlan Madon (Petronas)
Secretary: Mohd Rozi Umor (UKM)

Assistant Secretary: Lin Nan Ley (JMG)

Treasurer: Ahmad Nizam Hassan (Cadence Tech. S/B)
Editor: Lau Yin Leong (Ginn-M Corp. S/B)

Councillors (1 year): Tan Boon Kong (Freelance)

Nur Iskandar Taib (UM) Ng Tham Fatt (UM)

(Vacant)

Councillors (2 years): Lim Choun Sian (UKM)

Nicholas Jacob (JKR) Samsudin Hj. Taib (UM) Anil Nair (Unigeo Corp S/B)

Immediate Past President: Yunus Abdul Razak (JMG)

Certified by,

Kamal Roslan Mohamed

Election Officer

Short Note on the Visit by American Association of Petroleum Geologists (AAPG) to Geological Society of Malaysia (GSM)

Date: 28 January 2010 Time: 1100am – 1200 noon

Venue: Minerals and Geoscience Department Malaysia

22nd Floor, Tabung Haji Building,

Tun Razak Road, Kuala Lumpur.

GSM Council Members Present:

Dato' Yunus Abdul Razak, President Prof. Dr. Joy Jacqueline Pereira, Vice President Ling Nan Lev, Assistant Secretary

AAPG Representatives:

Richard D. Fritz, Executive Director, Tulsa, OK Adrienne Pereira, Independent Representative, AAPG Asia Pacific Region Askury Abd Kadir, Associate Professor, Universiti Teknologi PETRONAS, Perak

The AAPG's representatives expressed its intention of exploring the opportunity to collaborate with GSM as AAPG is growing rapidly in membership in the Asia Pacific region. The collaboration would possibly bring mutual benefits to both organizations for the furtherance of geoscience development.

In the meeting, the representatives from AAPG conveyed/proposed the followings for GSM's consideration/collaboration:

- 1. AAPG to digitize and market at their own expense, on a nonexclusive basis, the publications of the Geological Society of Malaysia (GSM).
- 2. AAPG, in collaboration with GSM, to host a Regional Geoscience Conference (Geo-Asia) focusing on petroleum at every odd year. AAPG is hosting a similar one in the Arabian Region at every even year.
- 3. AAPG's Education Programme which is offering short courses in the Asia-Pacific region whereby the GSM's members may participate.
- 4. AAPG is offering Student Programmes whereby the student members could participate.

During the meeting, we expressed our willingness to maintain the contact that was established and we look forward to the possibility of collaboration that could benefit the members. AAPG would send in the detailed proposals for GSM's consideration.

By: Dato' Yunus Abdul Razak Prof. Dr. Joy Jacqueline Pereira Ling Nan Ley February 2010

Short Note on the GEO 2010, the Middle East Geosciences Conference and Exhibition, 8-10 March in Bahrain, attended by Mazlan Madon on behalf of the Geological Society of Malaysia (GSM)

Date: 7-10 March 2010

Venue: International Convention Centre, Manama, Bahrain.

Purpose of trip:

AAPG Asia-Pacific President, Dr Joseph Lambiase extended an invitation to GSM President Dato' Hj Yunus Abdul Razak to the GEO 2010 conference and exhibition in Bahrain. The primary purpose was to follow-up on the idea of a similar conference in Kuala Lumpur under the "GEO" brand, organized in cooperation between AAPG, SEG, and GSM, together with event organizer MES (Malaysian Exhibition Services).

The fully sponsored trip was intended to convince the GSM of the benefits of such a conference to be held in KL, with view of making it happen sometime in 2011 or later.

Upon discussions between Dato' Yunus, Prof Joy Pereira and Dr Mazlan, it was decided that the GSM accepts the invitation to GEO 2010 with the understanding that GSM is under no obligation to agree with the proposal. The purpose of Dr Mazlan's attendance at the conference is to seek more information on the GEO series of conferences and report back to the GSM on the way forward.

Discussion on GEO concept

Besides attending the exhibition and technical sessions, an informal lunch meeting was held between the interested parties to explore further the possibilities of GEO in Kuala Lumpur. In attendance were:

AAPG Representative:

Alan T. Wegener, Director of Global Development and Conventions, Tulsa

MES Representatives:

Alun Jones, MES Kuala Lumpur Stephen Key, OES Bahrain Adam Ridgway, OES, London

GEO INDIA 2010

Narendra K. Verma, GEO INDIA 2010 Organising Chairman (ONGC)

GSM Representative:

Mazlan Madon, Council Member

Key discussion points regarding the GEO proposal:

- 1. AAPG and OES representatives expressed its hope to collaborate with GSM to organize a GEO series in Kuala Lumpur, which is regarded as a favoured location in SE Asia.
- 2. The success of the GEO brand in the Middle East since 2004 in Bahrain, and now extended to the forthcoming GEO INDIA 2010, has opened up possibility of a "GEO Asia" located in Kuala Lumpur.

Recommendations:

It is hereby recommended that the GSM Council deliberate on this proposal, taking into considerations these key factors:

- 1. Potential Benefits of GEO
 - a. Based on observations in Bahrain and its long-standing success in the Middle East, the potential for GEO to be successful for the conference and exhibition market in Asia-Pacific is high, strengthening Kuala Lumpur as a favoured destination for petroleum industry events.
 - b. The backing by AAPG and SEG, with the strong network support from OES/MES as the event organizer, could well be a boost towards internationalizing GSM conferences.

2. Key considerations for GSM

- a. PGCE is a relatively established brand in its own right as a premier Petroleum Geoscience event. Organising GEO as a separate event within the same year might not be in the interest of PGCE, as both would be competing for sponsors' already limited budget.
- b. In terms of technical content, however, PGCE is still perceived as a relatively 'local' or 'Malaysian', i.e. the themes and topics are mainly Malaysian E&P, and the presenters are mostly from the local fraternity. GEO and its link with AAPG and SEG may help 'internationalise' PGCE and attract a more diverse range of speakers and audience.
- c. If GEO in KL were to happen, whether it is a separate conference or in conjuction with PGCE, is an important decision to be discussed and made.
- d. If it is decided to maintain the independence of PGCE, it might be worth considering to repackage the 4-yearly GEOSEA into a more comprehensive GEOAsia (perhaps more frequent than 4 yearly), to include not just petroleum sectors but other industries.

It is hoped that this matter will be discussed by the council at the earliest opportunity, to weigh out all the major issues and ramifications to GSM, and a decision be made regarding the GEO proposal.

Report by, Mazlan Madon 2 April 2010

Geo-Asia Request for GSM to be Co-Host With AAPG

BACKGROUND

Representatives of the American Association of Petroleum Geologists (AAPG) paid a courtesy call to the Geological Society of Malaysia (GSM) on 28 January 2010. The GSM was represented by the President, Dato' Yunus Abdul Razak, Prof. Dr. Joy Jacqueline Pereira and Mr. Ling Nan Ley. The AAPG delegation comprised Dr. Richard D. Fritz, Executive Director and Ms. Adrienne Pereira, Independent Representative, AAPG Asia Pacific Region

The AAPG's representatives expressed its intention of exploring the opportunity to collaborate with GSM as AAPG is growing rapidly in membership in the Asia Pacific region. The collaboration would possibly bring mutual benefits to both organizations for the furtherance of geoscience development. The following collaborations were proposed:

- 1. AAPG to digitize and market at their own expense, on a nonexclusive basis, the publications of the Geological Society of Malaysia (GSM).
- AAPG's Education Programme, which is offering short courses in the Asia-Pacific region, to be opened to GSM members.
- 3. AAPG Student Programmes, to be opened to GSM student members.
- 4. AAPG, in collaboration with GSM, to host a Regional Geoscience Conference (Geo-Asia) focusing on petroleum at every odd year. AAPG is hosting a similar one in the Arabian Region at every even year.

Pursuant to the discussion, GSM was invited to attend a flagship meeting of the AAPG in Bahrain, to get a fair idea of the proposed concept for GeoAsia and its potential. Dr. Mazlan Madon represented the GSM Council and his report is enclosed as Annex 1.

Items 1-3 will benefit to the GSM Membership. Item 4 is a complex issue as it may have implications on the highly successful annual flagship of the GSM i.e. Petroleum Geology Conference and Exhibition (PGCE), jointly organized by GSM and Petronas. Thus, the **GSM Council requires the inputs and guidance from members of the AGM 2010** on this matter.

CERAMAH TEKNIK TECHNICAL TALK

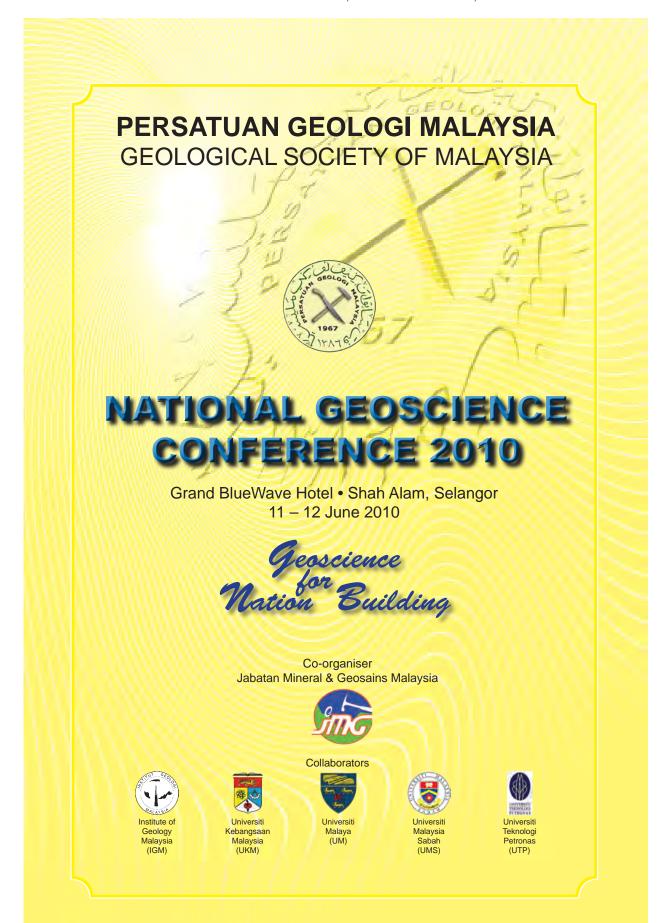
Tertiary-Quaternary volcanism in the Sarawak interior, and its implications for the continuing tectonic history of Borneo

Dr. Nur Iskandar Taib

17th June 2010

The above talk was jointly organised by the Minerals and Geoscience Department of Malaysia (JMG) and the Geological Society Of Malaysia (GSM) at the JMG Office in Kuching, Sarawak on the 17th June 2010. The speaker was Dr. Nur Iskandar Taib of University of Malaya. The talk which was attended by about 80 JMG staff provided a platform for discussion among geologists from the university and the government department on current research area and interest in the volcanic rocks of Sarawak. This include dating the age of the volcanic rock and and its relationship with tectonic activity.

Abstract — The Upper Rajang Valley covers a large area in the interior of the island of Borneo. It is underlain by the Cretaceous to Late Eocene deep to shallow marine sediments of the Rajang Group. Within this area are several Cenozoic volcanic edifices, which to date have been sparsely studied.


Two distinct episodes of volcanism are recognized – the first, dated early Eocene, consists of K-rich basalts, and is represented by the Bukit Mersing volcanics, which were erupted conformably onto deep water turbidites of the Rajang Group. The second, far more extensive, is dated Pliocene to Quaternary, and is bimodal, consisting mainly of early dacite and rhyodacite tuffs, with a smaller amount of later basalt, forming several volcanic plateaus and massifs (Hose Mountains, Usun Apau, Linau-Balui, Niewenhuis Mountains and others). They lie unconformably over pre-Miocene sediments, the Linau-Balui basalts having been erupted onto Quaternary river terraces.

Mantle-normalized REE and incompatible trace element spider plots reveal that the Bukit Mersing basalts have geochemical affinity with Oceanic Island Basalts (OIB) and rift basalts, being enriched in LREEs and Most Incompatible Elements, and no Eu anomaly. Preliminary trace element data for several basalt samples from Usun Apau also show Oceanic Island/Rift affinity.

Bimodal volcanism is most often associated with rift environments. Efforts are being made to radiometrically date the volcanics, in part to determine the possibility of future eruptions. The Upper Rajang Valley is remote, covered in tropical rainforest and is very sparsely populated. At this time, there is no information concerning signs of imminent volcanism, such as hot springs and microseismicity.

NATIONAL GEOSCIENCE CONFERENCE 2010

OPENING ADDRESS BY

MENTERI BESAR SELANGOR YAB TAN SRI DATO' SERI ABDUL KHALID BIN IBRAHIM

Bismillahirrahmanirrahim

Yang Berusaha, Dato Yunus Abdul Razak, Ketua Pengarah, Jabatan Mineral dan Geosains Malaysia;

Yang Berusaha, Prof. Dr. Joy J. Pereira, Presiden, Persatuan Geologi Malaysia;

Para Tetamu Jemputan, Tuan-tuan dan Puan-puan sekalian.

Assalamu'alaikum w.b.t. dan selamat sejahtera.

Syukur kehadrat Allah Subhanahu Wa Taala kerana dengan taufik dan limpah kurnia-Nya, kita semua dapat berhimpun dalam sebuah majlis ilmu anjuran Persatuan Geologi Malaysia (GSM) dan Jabatan Mineral dan Geosains Malaysia (JMG) iaitu Persidangan Geologi Kebangsaan dengan tema "Geosains untuk Pembangunan Negara".

Saya juga ingin mengucapkan terima kasih yang tidak terhingga kerana dijemput untuk merasmikan Persidangan Kebangsaan ini.

Hadirin dan hadirat,

Persidangan Geologi pertama diadakan di Universiti Malaya pada tahun 1986 sebelum pada tahun 1988 dan 1989, 'Persidangan Geologi Kebangsaan' diadakan di Cameron Highland dan Fraser Hill dianjurkan bersama Persatuan Geologi Malaysia dan Jabatan Mineral dan Geosains Malaysia pada ketika itu dikenali sebagai Jabatan Penyiasatan Kajibumi Malaysia. Sejak itu persidangan ini menjadi persidangan tahunan atau dua tahun sekali.

Persidangan seperti ini adalah amat penting dan seharusnya menjadi landasan kepada ahli geologi dan saintis menyumbang pelbagai idea dan strategi baru dengan matlamat bersama untuk meningkatkan keupayaan Perkhidmatan Geosains ke tahap lebih tinggi dalam memenuhi permintaan dan harapan rakyat sesuai dengan tuntutan dan prospek zaman.

Melihat kepada objektif utama persidangan ini, ia bertujuan untuk mendokumentasikan segala hasil penyelidikan dan sumbangan geosains dalam menjadikan bumi ini lebih sihat dan selamat untuk didiami. Adalah dijangkakan peserta persidangan berpeluang mempelajari penemuan baru dan teknik terkini dalam penyiasatan geosains dan sumbangannya kepada kesejahteraan hidup masyarakat.

Komitmen anda semua dalam persidangan ini nanti adalah penting untuk masa depan negara dan rakyat.

Hadirin dan hadirat yang dikasihi sekalian,

Sejarah menunjukkan para penjajah barat menjelajah pelusuk dunia dengan membawa bersama mereka ahli botani, zoologi dan ahli geologi untuk mendokumentasikan sumber alam sekitar seperti flora—fauna dan mineral seperti bijih timah, bijih besi dan emas. Dalam konteks Malaysia misalnya, Ahli Geologi pertama bernama William Jack datang ke Malaya pada tahun 1822 melaporkan 'Rock of Island of Penang and Singapores' kepada 'Geological Society of London'. Pada September 1903, John Brooke Scrivenor, Pengarah Jabatan Survei Geological Malaya, merekodkan maklumat 'Geology of Pahang and other Federal State of Malaya'. Beliau juga merekodkan maklumat geologi Singapura, Melaka dan Sarawak pada tahun 1903.

Melalui ilmu geologi yang dibawa, sumber primer bijih timah dapat dikenal pasti dan digunakan sebaik mungkin untuk menjana ekonomi Negara. Tradisi mendokumentasikan rekod penemuan Geosains diteruskan dengan berbagai

penerbitan Geologi dan Geosains. Sumber maklumat mineral yang ditemui dan direkodkan ini digunakan sebaik mungkin untuk menjana ekonomi Negara.

Kerajaan Negeri Selangor sentiasa memberi sokongan kepada sebarang usaha dari komuniti profesional dan akademik dalam memberi perkhidmatan terbaik kepada rakyat dalam usaha menjadikan bumi ini tempat yang selesa dan selamat diduduki. Dengan adanya isu seperti perubahan iklim, bencana alam seperti tanah runtuh dan banjir; peranan Ahli Geologi dan pakar-pakar berkaitan mestilah ditingkatkan melalui proses merakyatkan pengetahuan agar bukan saja pakar, setidak-tidaknya rakyat juga dapat terlibat memberikan aduan bagi tindakan-tindakan pencegahan dilakukan.

Negeri Selangor yang mempunyai keluasan 7,960 kilometer persegi dengan penduduk dijangkakan akan meningkat dengan pesat dari 5.2 juta penduduk kepada 7 juta penduduk menjelang tahun 2020. Kerajaan Negeri telah mengisytiharkan kawasan berbukit seluas 108,000 hektar sebagai Taman Negeri Selangor yang mempunyai Pematang Kuarza sepanjang 14 kilometer. Ia merupakan landskap semula jadi permatang kuarza terpanjang di dunia berusia lebih 100 juta tahun dan mempunyai potensi dijadikan sebagai khazanah warisan semula jadi yang unggul. Ahli geologi dan saintis perlu mempertingkatkan kajian saintifik dan pen emuan saintifik hendaklah didokumentasikan sebaik mungkin untuk menjadikan Taman Negeri sebagai Tapak Warisan Semula jadi bertaraf dunia dan sebagai tarikan pelancong ke Malaysia.

Tuan-tuan dan Puan-puan,

Perkembangan menunjukkan Malaysia kini kian terdedah kepada beneana alam seperti banjir, tanah runtuh, tsunami dan yang terkini ialah kejadian gempa bumi di Bukit Tinggi yang berskala keeil. Negeri Selangor sendiri saban tahun menghadapi kejadian tanah runtuh yang bukan saja menyebabkan kematian tetapi melibatkan kerosakan harta benda. Ini telah menimbulkan kegelisahan kepada semua pihak khususnya orang awam.

Ahli geologi seharusnya mempertingkatkan penyelidikan dalam hal ini dan menyebarkan maklumat yang tepat pada kadar yang cepat bagi membolehkan usaha berkesan dibuat bagi menangani isu-isu seperti ini.

Antara usaha yang telah Kerajaan negeri lakukan ialah penyediaan "Garis Panduan Perancangan Pembangunan di Kawasan Bukit dan Tanah Tinggi Negeri Selangor 2010", bertujuan meminimumkan kesan bencana geologi di peringkat perancangan pembangunan serta penubuhan Jawatankuasa Bertindak (task force) pemantauan kawasan berisiko bencana geologi yang dianggotai pelbagai profesion. Mekanisme ini lebih berkesan sekiranya terdapat maklumat yang tepat tentang kawasan yang berpotensi bencana geologi.

Ini hanyalah contoh bagaimana ahli geologi dan saintis dapat memairikan peranan lebih berkesan untuk pembangunan Negara. Pembangunan kini tidak terhad kepada meninggikan bangunan tetapi meliputi pelbagai isu yang luas.

Hadirin dan hadirat,

Saya percaya persidangan ini dapat memberikan hasil yang cemerlang. Dengan empat (4) kertas kerja utama dan 94 kertas kerja saintifik meliputi pelbagai topik berkaitan tema persidangan dan dibentangkan dalam pelbagai bentuk; di samping jumlah peserta yang begini ramai; saya percaya mesej yang mahu diketengahkan boleh dipanjangkan kepada masyarakat.

Saya ingin mengucapkan syabas kepada Persatuan Geologi Malaysia dan JMG untuk penganjuran persidangan ini dan sokongan berterusan daripada semua pihak khususnya ahli akademik Institut Pengajian Tinggi.

Selamat berforum dan semoga mendapat ilmu yang bermanafaat dari persidangan ini.

Dengan lafaz Bismillahirrahmanirrahim, saya dengan ini merasmikan 'Persidangan Geologikal Kebangsaan 2010' dengan tema "Geosains untuk Pembangunan Negara".

Sekian, terima kasih.

NATIONAL GEOSCIENCE CONFERENCE 2010

11 – 12 June 2010 • Grand BlueWave Hotel, Shah Alam, Selangor, Malaysia

PROGRAMME

DAY 1 - FRIDAY 11 JUNE 2010

08:00 - 09:00	REGISTRATION		
00.00 - 09:00			
09:00 – 09:10	OPENING CEREMONY Welcoming Address by Prof. Dr. Joy J. Pereira President, Geological Society of Malaysia		
09:10 – 09:30	Opening Address by YAB. Tan Sri Dato' Seri Abdul Khalid Ibrahim Chief Minister of Selangor		
09:30 – 11:00	POSTER SESSION 1 AND TEA BREAK		
11:00 – 11:30	KEYNOTE 1 Joy Jacqueline Pereira Geoscience in support of climate resilient development		
	TECHNICAL SESSION A1	TECHNICAL SESSION B1	
11:30 – 11:50	PAPER A1 5 LEE CHAI PENG Mass extinctions and global warming: lessons from the past for our present and the future	PAPER B1 RICHARD MANI BANDA, ALEX UNYA, LIU HUA & CHEN SHICK PEI Geology and geochemistry of Bukit Nimong and Selanjan intrusives of West Sarawak, Malaysia - Implications for gold and porphyry copper mineralization	
11:50 – 12:10	PAPER A2 PATRICK GOU & WAN HASIAH ABDULLAH The geochemical fingerprint of the Layang-Layangan Beds, Labuan Island, NW Sabah Basin: Belait or Temburong Formation?	PAPER B2 ZAKARIA ENDUT & TEH GUAN HOE Structural control on quartz veins in the Penjom Gold Mine, in particular at Kalampong Pit	
12:10 – 12:30	PAPER A3 PADMANABHAN, E., A.S. MOHD PAUZI, M.S. MASNAN, M.A. MOKHTAR & M.V. PRASANNA Ripple mark styles in the Belait Formation: Implications on depositional history	PAPER B3 Teh Guan Hoe, Nurul Fatehah & Hazel Hamilson Characterisation of gold mineralisation, Sungai Charah - Cini Timur area, Pahang	
12:30 – 14:30	LUNCH / PRAYER BREAK		
14:30 – 15:00	KEYNOTE 2 Gue See Sew, Wong, Shiao Yun & Cheah, Siew Wai Geotechnical engineering for hillsite development		
	TECHNICAL SESSION A2	TECHNICAL SESSION B2	
15:00 – 15:20	PAPER A4 TAJUL ANUAR JAMALUDDIN Ketidaksesuaian kaedah perlindungan cerun – Kajian kes cerun potongan batuan metasedimen terluluhawa tinggi Di Malaysia	PAPER B4 Siti Mazatul Azwa & Hashim, M. Local silica sand deposits and their utilisation in producing cordierite glass-ceramics	
15:20 – 15:40	PAPER A5 TAN BOON KONG The Kuala Lumpur Outer Ring Road: Engineering Geology	PAPER B5 K.K. CHEANG Critical mineral characteristics and their applications to the paint industry in the Asia region	

15:40 – 16:00	PAPER A6 GHANI RAFEK, A., GOH, T.L., HARIRI ARIFFIN, M., & BAIZURA YUNUS, N. Perbandingan kaedah penentuan kekuatan ricih batuan granit	PAPER B6 MAT NIZA BIN ABDUL RAHMAN & MOHD SUHAILI ISMAIL Lime industry in Malaysia	
16:00 – 16:20	PAPER A7 Mohd For Mohd Amin, H.M. Abdul Aziz K.M. Hanifah, Amir Hamzah Mustapha, Edayu Saleh @ Aman Engineering properties of limestone from Pandan Indah, Kuala Lumpur	PAPER B7 KAMAR S. ARIFFIN, HAYATO KURUMI & AKIRA IMAI Rare Earth Elements (REE) resources potential in weathered granitic rocks in Peninsula Malaysia	
16:20 – 16:40	PAPER A8 ISMAIL ABD RAHIM, SANUDIN HJ. TAHIR & BABA MUSTA Correlation between Modified Slope Mass Rating (M-SMR) System with lithofacies of the Crocker Formation in Kota Kinabalu, Sabah, Malaysia	PAPER B8 SHARIZAN IBRAHIM Recovery of gold from gold scrap by hydrometallurgical process	
16:40 – 17:00	PAPER A9 Z. A. RAHMAN, N. AHMAD, U. HAMZAH & W. Z. W. YAACOB Pencirian geoteknik tanah baki granit dan metasedimen tercemar minyak	PAPER B9 HAMZAH MOHAMAD, MOHD BASRIL ISWADI BASORI & WAN FUAD WAN HASSAN An investigation by variable pressure scanning electron microscopes (VPSEM) of primary gold from Selinsing Gold Mine, Pahang, Malaysia	
17:00 – 17:30	TEA BREAK		
17:30 – 19:00	DIALOGUE ON THE GEOLOGISTS ACT (2008)		
19:00 – 22:00	CONFERENCE DINNER		

DAY 2 – SATURDAY 12 JUNE 2010

09:00 – 09:30	WAN HASIAH ABDULLAH Geoscience for Nation Building : Challenges facing the petroleum E&P sectors		
	TECHNICAL SESSION A3	TECHNICAL SESSION B3	
	PAPER A10	PAPER B10	
09:30 – 09:50	B.K. Lim	Basir Jasin & Zaiton Harun	
09.30 - 09.30	The need for independent post-survey QC to check the high failure rate of Geohazards Predictions	Early Carboniferous (Tournaisian) Radiolarians from Peninsular Malaysia and their significance	
09:50 – 10:10	PAPER A11	PAPER B11	
	RODEANO ROSLEE & TAJUL ANUAR JAMALUDDIN Kebolehrentanan bencana gelinciran tanah (LHV): Sorotan literatur dan cadangan pendekatan baru untuk pengurusan risiko gelinciran tanah di Malaysia	AYE KO AUNG A short note on the discovery of Early Devonian tentaculite-bearing unit from Taunggyi-Taungchun range, Shan State (south), Myanmar	
	PAPER A12	PAPER B12	
10:10 – 10:30	Омак Alkouri & Ros Fatihah Geospatial information system of karst land use evaluation in Kinta Valley, Malaysia	ELVAENE JAMES, HAMZAH MOHAMAD, SHARIFF A.K. OMANG & MOHD ROZI UMOR Singkapan batuan yang tersingkap dari Layang- Layang hingga Laban Rata, Gunung Kinabalu Sabah	
10:30 – 11:30	POSTER SESSION 2 AND TEA BREAK		

	TECHNICAL SESSION A4	TECHNICAL SESSION B4
11:30 – 11:50	PAPER A13 Mohd Ezwan Bin Dahlan, Mohd Yusop Bin Ramli & Mohd Anuar Bin Ishak Kajian penderiaan jauh kawasan Saratok-Pengajar, Sarawak, Malaysia	PAPER B13 KAMAL ROSLAN MOHAMED Geologi Teluk Kubang Badak, Langkawi, Kedah Darul Aman
11:50 – 12:10	PAPER A14 MOHAMAD ABD MANAP, WAN NOR AZMIN SULAIMAN, MOHAMMAD FIRUZ RAMLI, NORAINI SURIP, & MOHD ARMI ABU SAMAH Application of the analytical hierarchy process (AHP) to groundwater potential mapping in upper part of Langat Basin	PAPER B14 DANA BADANG Geologi dan geomorfologi kepulauan dalam cadangan Geopark Delta Sarawak
12:10 – 12:30	PAPER A15 Askury Abd Kadir, Angga Pratama Herman, Aminur Rashid Mohd Shariai and Aaron Subash George Physico-chemical behavior of carbonaceous shale at Batu Gajah, Perak: Their problems and mitigation	PAPER B15 Mohd Rozi Umor, Azman Abd. Ghani & Hamzah Mohamad Geokimia batuan igneus Pulau Pangkor, Lumut, Perak
12:30 – 12:50	PAPER A16 ENIO KANG, M.S., J. SHAMSHUDDIN, C.I. FAUZIAH & M.H.A HUSNI Occurrence of pyrite in the coastal plains as an evidence for the rise of sea level in the Malay Peninsula during the Holocen	PAPER B16 Wan Fuad Wan Hassan & Muhamad Hafiz bin Juhari Heavy mineral pattern in stream sediments of Kuala Krai area, Kelantan
12:50 – 14:00	LUNCH / PRAYER BREAK	
14:00 – 14:30	H.D. TITA Earthquake and tsunami threats to the Malaysian shores TECHNICAL SESSION A5	of the South China Sea TECHNICAL SESSION B5
14:30 – 14:50	PAPER A17 ZUHAINI MOHAMED & H.D. TJIA Fault patterns in Peninsular Malaysia: Origin and development	PAPER B17 HARYATI AWANG & SYAHRIL AMRI A.MALEK Site investigation using integrated methods of borehole and resistivity imaging for silty soil – A case study
14:50 – 15:10	PAPER A18 FELIX TONGKUL & SHARIFF A.K OMANG Active regional fault zones in Sabah, Malaysia	PAPER B18 Abd Rahim Harun & Abdul Rahim Samsudin Survei graviti untuk kajian morfologi kars di subpermukaan kawasan Lembah Kinta, Perak - Penemuan awal
15:10 – 15:30	PAPER A19 ZAITON HARUN & BASIR JASIN Distribution of several thrust faults in Kedah: Implications to the geology of Kedah	PAPER B19 Ahmad Tajuddin Hj. Ibrahim & Che Noorliza Lat Electrical resistivity imaging to characterize weathered basalt and granite
15:30 – 15:50	PAPER A20 MUSTAFFA KAMAL SHUIB Structural map and multiple deformation episodes of Tanjung Kempit, Endau, Johore	PAPER B20 SAMSUDIN HJ TAIB Electrical resistivity method – An application in site engineering work

15:50 – 16:10	PAPER A21 ZAINAL ABIDIN JAMALUDDIN, MAZLAN MOHA- MAD ZAIN, WAN SAIFULBAHRI MOHD & MOHD BADZRAN MAT TAIB Kajian geologi struktur kawasan Bukit Tinggi, Bentong,	PAPER B21 Nur Islami, Samsudin HJ Taib & Ismail Yusoff High-resolution imaging of the groundwater potentials with geoelectrical resistivity tomography in back fluvial deposit, Machang, Kelantan, Malaysia
16:10 – 16:30	Pahang TEA BREAK	
	TECHNICAL SESSION A6	TECHNICAL SESSION B6
16:30 – 16:50	PAPER A22 Ros Fatihah Muhammad & H.D. Tjia Double impact rings Luat and Bertam, Cenderoh area, Perak	PAPER B22 NURUL NABIHAH HUSSIN, CHE NOORLIZA LAT & AHMAD TAJUDDIN HJ. IBRAHIM Pemetaan Hidrogeofizik di Pulau Kapas, Terengganu
16:50 – 17:10	PAPER A23 JATMIKA SETIAWAN & IBRAHIM ABDULLAH Structural geology of Gua Musang Formation in negeri Kelantan	PAPER 23B Mohammed I. I. Abu-Shariah, Samsudin Hj. Taib, Ismail Yusoff, Ros Fatihah Muhammad & Samsudin Shahid Geophysical techniques for hydrological investigations
17:10 – 17:30	PAPER A24 Muhd. Barzani Gasim, Mohd. Ekhwan Toriman, Hii Hion Tung and Pan Ia Lun The two seasonals characteristics of Pahang River, Pahang, Malaysia	PAPER B24 WAN SURIANI A RAMAN & ZUHAR TUAN HARITH High resolution seismic refraction survey in urban area
17:30 – 18:00	CLOSING CEREMONY	

POSTER SESSION 1: 09:30 - 11:00, Friday 11 June 2010

- P1 Teh Guan Hoe & Teh Yin Yuan Iron mineralisation, south Gunung Jerai, Kedah, implications of genesis
- P2 TEH GUAN HOE, MUHAMAD MAHRAN & RABIATUL ADAWIYAH
 Physical and geochemical characterisation of gold mineralisation, Kg Ayer Puteri Kg Seri Pantai area, Mersing, Pahang
- P3 ZAKARIA MOHAMAD, MOHD. SIDI DAUD, SYED OMAR, WAN AIDA WAN ZAHARI, JAMES BACHAT & MOHAMMAD SOFI MOHAMMED NASIR
 Potential debris flow study of the Hulu Kelang area
- P4 Qalam Azad Rosle, Zakaria Mohamad, Ros Fatihah Muhammad, Khairul Azlan Mustapha & H.D.Tjia Kajian kestabilan dan pemuliharaan geologi ke atas Permatang Kuarza Genting-Kelang di Ampang, Selangor
- P5 JOANES MUDA
 Cannonball concretions of Northern Sabah, Malaysia
- P6 RODEANO ROSLEE TAJUL ANUAR JAMALUDDIN & MUSTAPA ABD. TALIP
 Aplikasi GIS dalam penaksiran risiko gelinciran tanah (LRA): Kajian kes bagi kawasan Kota Kinabalu, Sabah, Malaysia
- P7 RAFEEQA A. RASHID, N.NURUL NADIAH N.RAMLI, SITI NOOR AISYAH IDRIS & GHANI RAFEK A. Pencirian geomekanik jasad batuan metamorf Formasi Bukit Kenny dengan tumpuan khusus terhadap pencirian geseran satah ketakselanjaran
- P8 Z.A. RAHMAN, S.N.S. ZULKAFLI & W. Z. W. YAACOB Pengaruh amang terhadap sifat geoteknik tanah baki metasedimen dan basalt
- P9 NURUL BAIZURA MOHD YUNUS, ABDUL GHANI RAFEK, GOH, T. L. & MOHD HARIRI ARIFIN Analisis pengkuantitatifan gred luluhawa bahan batuan granit dengan ujian tukul Schmidt: Contoh kajian di Malaysia
- P10 Wan Zuhairi W.Y., Abdul Rahim S., Abdul Ghani Rafek, Zahari I. & Muchlis The effect of soil heterogeneities on the movement of DNAPL using small-scale geotechnical centrifuge
- P11 Ng, T.F.
 Microstructural characteristics of some alkali-aggregate reactive granites of Peninsular Malaysia

- P12 MUHAMMAD AQEEL ASHRAF, MOHD. JAMIL MAAH & ISMAIL YUSOFF
 Study of water quality and heavy metals in soil & water of ex-mining area Betari Jaya, Peninsular Malaysia
- P13 M.R. Gharibreza, J.K., Raj, I. Yusoff, M. Zainudin, W. Zakaria Physical properties of Tasek Bera sediments as indicators of environmental change
- P14 Mohd Hairil Razak, Wan Zuhairi W.Y. & Zulfahmi Ali Rahman Characteristic of acid mine drainage and potential remedial method of abandoned tin mine in Sungai Lembing, Pahang
- P15 Chong Yee Liew & Wan Zuhairi Wan Yaacob Heavy metals adsorption by residual soils of rhyolite, andesite and basalt from Pahang, Malaysia
- P16 Sahibin Abd. Rahim, Wan Mohd Razi Idris, Tukimat Lihan, Zulfahmi Ali Rahman, Muhd Barzani Gasim, Mohd Ekhwan Toriman, Azman Hashim & Norhadilla Hadib Flux of nutrients and heavy metals to Tasik Chini through erosion from Sungai Melai sub-catchment, Chini, Pahang
- P17 Mohd Harith Azhar, Wan Hasiah Abdullah, Ralph L. Kugler and Mustaffa Kamal Shuib Petroleum source potential of Tertiary Coal of Western Pinangah, Sabah Malaysia
- P18 Wong Yien Lim & Lee Chai Peng
 The Upper Eocene to Upper Oligocene Ransi Conglomerate of the Tatau Formation in the Tatau-Bintulu area, Sarawak
- P19 Tareq H. Mezughi, Juhari Mat Akhir, Abdul Ghani M .Rafek & Ibrahim Abdullah GIS based method to rank the importance of factors controlling landslides: Case study East West Highway (Gerik Jeli), Malaysia"
- P20 Younes AJAL ABULGHASEM, JUHARI BIN MAT AKHIR, WAN FUAD WAN HASSAN, ABDUL RAHIM SAMSUDIN & BASHIR MOHAMED YOUSHAH Integrating data from remote sensing and geology for geological investigation in the Eastern ends of Wadi Shati iron ore deposit
- P21 Nor Liana Ab Razak, Ismail Yusoff, & Nur Islami Abd Rahman Estimation the baseflow index for the upper Langat river catchment, Selangor, Malaysia
- P22 Goh, T.L., Ghani Rafek, A., Baizura Yunus, N. & Hariri Ariffin, M

 Quantification of the influence of discontinuities on the compressive strength of Malaysian granite

POSTER SESSION 2: 10:30 – 11:30, Saturday 12 June 2010

- P23 Zaw Win, Umar Hamzah & Abdul Rahim Samsudin
 Some engineering geological and geophysical properties of weathered granitic soils in Fraser Hill, Pahang
- P24 Yalda Motadelrou & Samsudin HJ Taib Geoelectrical study of Taman Beringin landfill, Kuala Lumpur, Malaysia
- P25 Hammad Hazim Bin Mohd Azhar & Zuhar Zahir Tuan Harith
 The effect of bedding plane orientation towards P-wave velocity of Berea Sandstone at different water saturation degree
- P26 CHE KU MOHD WAQIYUDDIN CHE KU BESAR, UMAR HAMZAH & ROFIKUL ISLAM Survei keberintangan geoelektrik dan GPR dalam kajian pencemaran minyak di sekitar Stesen Caltex Kubang Kerian Kota Bharu
- P27 FADZLIN HASANI KASIM & MOHD ROZI UMOR
 Kajian petrografi dan geokimia batuan igneus di kawasan selatan Pulau Pinang
- P28 Noraznida Bt. Kamaruszaman & Mohd Rozi Umor Petrografi dan geokimia batuan granit di bahagian utara Pulau Pinang
- P29 Mohammad Azuan Ab Talib & Mohd Rozi Umor Kajian Petrografi dan Geokimia Batuan Igneus di Teluk Bahang-Balik Pulau, Pulau Pinang
- P30 SITI NURFARHANA MOHAMED ZAID & HAMZAH MOHAMAD
 The geochemical signature of granitic body along the Kajang-Sg. Long Silk Highway, Hulu Langat, Selangor
- P31 NURUL FARAH RAHAMAT NOOR & HAMZAH MOHAMAD

 The geochemical signature of granitic body at the vicinity of Berjaya Hills Resort, Bentong, Pahang

- P32 PUTERI SARAH AB NASIR, SUHAILA MOHD RAIS & HAMZAH MOHAMAD The geochemical signature of granitic body along the coast of Tanjung Bidara, Melaka
- P33 Mustaffa Kamal Shuib Deformations in the metasediments and conglomerates of Tanjung Leman, Johore
- P34 Norsafawati Saaid & T.F. Ng Mikrostruktur dan analisis kinematik batuan milonit S-C di Bukit Tinggi, Pahang
- P35 Mohammed Hail. Hakimi, Wan Hasiah Abdullah and Mohamed Rajab Shalaby Source rock characteristics and basinmodelling of the Upper Jurassic Madbi Formation, Masila Basin, Yemen
- P36 SYAMIM RAMLI, E. PADMANABHAN, M.A. MOKHTAR & WAN ISMAIL WAN YUSOFF Spatial-temporal variability of hydrocarbon distribution in the northern sector of the Belait Formation
- P37 KANAAN ABDULLAH JASIM & AZHAR HJ HUSSIN Lithofication and fossils of Quaternary Carbonate Rocks from the Bum-Bum Island, South East Sabah, Malaysia
- P38 Mohd Danial Hariz Mohd Azir, Che Aziz Ali & Kamal Roslan Mohamed Mikrofasies dan diagenesis batu kapur sungai Kilim dan sungai Kisap, formasi Setul di langkawi, Kedah Darul Aman
- P39 NORISHAH HASHIM, ROS FATIHAH MUHAMMAD, H. D. TJIA AND OMAR ALKOURI Detailed mapping of volcanic ash distribution in Lenggong and Kuala Kangsar areas
- P40 YASAMIN KH. IBRAHIM, LEE CHAI PENG, ROS FATIHAH MUHAMMAD, EARL OF CRANBROOK, LIM TZE TSHEN & KIRA E. Westaway Vertebrate fossils from Badak Cave C, Lenggong, Perak in Peninsular Malaysia
- P41 Fatin Liyana Alias, Wan Hasiah Abdullah, Ralph L. Kugler & Mustaffa Kamal Shuib Thermal maturity assessment of Tertiary coal-bearing sequence of the West Middle Block of the Pinangah Coal Field, Sabah, Malaysia
- P42 CHE AZIZ ALI, MOHD SHAFEEA LEMAN & KAMAL ROSLAN MOHAMED Kewujudan Bivalvia Alatochonchidae di dalam batu kapur Bukit Biwah, Tasik Kenyir Terengganu
- P43 Muhammad Ashahadi Dzulkafli, Basir Jasin Mohd Shafeea Leman Penemuan radiolaria berusia perm dari kawasan sekitar Pos Belau, Ulu Kelantan
- P44 SHERYL LIAW HUI HUNG & JUHARI MAT AKHIR Pemetaan dan analisis lineamen menggunakan imej PCA SPOT 5 di bahagian utara Maran, Pahang

NATIONAL GEOSCIENCE CONFERENCE 2010 **Organising Committee**

Advisor Joy Jacqueline Pereira Chairman Zakaria Mohamad Secretary Mohd Rozi Umor Treasurer Ahmad Nizam Hasan : Ng Tham Fatt Technical Programme

Che Ibrahim Mat Som

Poster & Exhibition Ling Nan Ley

Qalam A'zad Bin Rosle

Registration & Logistics Anna Lim

Protocol & Souvenir Siti Faridah Yusup

> Mohd Sidi Daud Ling Nan Lev

Mahizam bin Ibrahim IT Facilities Master of Ceremony Qalam A'zad bin Rosle

Maizatul Akmar bt Aros

Photographer Mohd Noor Aizad bin Morad

NATIONAL GEOSCIENCE CONFERENCE 2010

11 - 12 June 2010 • Grand BlueWave Hotel, Shah Alam, Selangor, Malaysia

Keynote 1

Geoscience in support of climate resilient development

JOY JACQUELINE PEREIRA

Southeast Asia Disaster Prevention Research Institute (SEADPRI-UKM)
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E.
Email Address: joy@ukm.edu.my

Localised climate projection by the National Hydraulic Research Institute of Malaysia (NAHRIM) indicate a substantial increase in monthly rainfall over the northeast coastal region and a decrease in monthly rainfall in the west coast of Peninsular Malaysia by the year 2050. Simulations of future river flows in several watersheds in the east coast of Peninsular Malaysia indicate increases in hydrologic extremes, i.e. higher high flows and lower low flows when compared with historical levels.

With the onset of climate change, the number of disasters and people affected is anticipated to increase. Climate change is a process that influences all hydrometeorological hazards. Generally, geological hazards are not influenced by climate change. However, landslides and subsidence are to a certain extent influenced by the water table level that is sensitive to rainfall, which is in turn susceptible to climate change. Increases or decreases in water levels of rivers may also have consequences for water quality. Higher and extreme run-offs may result in increased risk of flooding, which in turn heightens the risk of landslide disasters in urban areas. Increased flooding, particularly in areas previously not exposed to the hazards could lead to dispersal of contaminants and toxins into rivers where wastewater treatment plants are overwhelmed. The possibility of circulation of environmentally hazardous substances in surface water where industrial sites and landfills are affected cannot be ignored. The consequences could be disastrous if such risks are not addressed.

In order to achieve sustainable human development, it is necessary to ensure that the planning process includes socio-economic considerations, management of resources and suitability of land, taking into account its potential geohazards and environmental impacts. In addition, the planning process also has to take into account the changing climate and its potential impacts so as to reduce vulnerability and ensure resilience of any proposed socio-economic development project. It would be more cost-effective to take adaptation measures early on, especially for critical infrastructure with long economic life. Current planning of critical infrastructure should take into account adaptation to the impacts of climate change to reduce the risk of disasters.

The issue of climate change and its interplay with the environment is complex, connected and highly variable in spatial and temporal scale. There is also a high level of uncertainty involved. Decision-making in the context of climate change demands an appreciation of the "big picture". The three dimensional spatial and temporal approach of geoscience allows for an appreciation of the "big picture" to address the complex interplay of environmental systems in a changing climate. The use of geoscience expertise, tools and mapping capabilities can contribute to assess the vulnerability of society to catastrophic and insidious hazards, both current and anticipated, in the onset of climate change.

Keynote 2

Geotechnical engineering for hillsite development

GUE SEE SEW, WONG, SHIAO YUN, CHEAH, SIEW WAI

G&P Geotechnics Sdn Bhd, Kuala Lumpur, Malaysia Email Address: gnp-geo@gnpgroup.com.my website: www.gnpgroup.com.my

Since the collapse of Tower 1 of Highland Towers on 11th December, 1993 that killed 48 people, both geotechnical engineers and engineering geologists have been put under the limelight. As a result of a shortage of flat or undulating land, housing and infrastructure developments on hilly terrain have become unavoidable. As such, the need for greater understanding of slope management and engineering practices has become more prominent and inputs from engineers and engineering geologist throughout the entire stage of hillsite development has been emphasised.

Improvements in slope engineering and slope management have been noticeable, since the notorious landslide incident in 1993. One of them was the establishment of the Slope Engineering Branch under the Public Works Department (PWD) in 2004, after the rock fall failure at Bukit Lanjan near Kuala Lumpur in 2003 which resulted in a 6 months highway closure. Numerous guidelines on policies for hillsite development were also introduced with more stringent conditions for approval. Furthermore, the introduction of Accredited Checkers in 2007 by BEM for geotechnical designs of hillsite development is also one of the initiatives implemented to improve slope engineering practices and mitigate the risk of landslides.

This keynote outlines the essential elements in slope engineering and management for both soil and rock slopes. The roles and responsibilities of both geotechnical engineers and engineering geologists are also emphasised especially on the importance of design checks and reviews. Furthermore, important considerations for subsurface investigation planning and recommendations on good engineering practices are also discussed. Finally, appropriate systems for construction quality assurance and control (QA/QC) as well as supervision by Design Consultants are recommended together with guidelines on long-term slope maintenance.

Keynote 3

Geoscience for Nation Building: Challenges facing the petroleum exploration and production sectors

Wan Hasiah Abdullah

Department of Geology, University of Malaya, 50603 Kuala Lumpur Email Address: wanhasia@um.edu.my

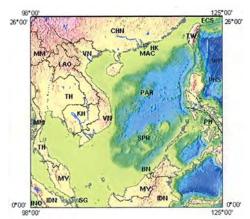
Our nation's development and prosperity owes much to the petroleum resource under our seas and to the successful management of these resources by our national oil company, PETRONAS. Since its incorporation in 1974, PETRONAS has paid the government about RM336 billion. However, the petroleum exploration and production (E&P) sectors are currently facing challenging times. As recently as July 2008, oil prices hit record highs of over US\$147 per barrel. But by December the same years, prices plummeted to below US\$40 per barrel amid the worst global recession in decades. E&P industries are certainly facing many challenges. Among the main challenges considered most critical are (i) the high costs (ii) high risk of working in frontier areas, and (iii) inadequate quantity-quality of human capital. Universities, in their effort in trying to support the industry, are also facing a number of challenges. Primarily the challenge that Universities face is trying to meet the demands of the oil industry for skilled graduates. Yet universities are themselves lacking in much needed funding, facilities as utilised within E&P sectors and industry experiencedmanpower. Universities need to engage the best brains to teach and should obtain talent worldwide to ensure that the teaching quality is raised. The industry must step forward and work with the universities to attract high-achieving students to petroleum geoscience. The current shortage of geoscientists presents a great opportunity for industry and universities to develop long-term collaboration. Presently UM is embarking further into this with the plan to introduce a new MSc in Petroleum Geoscience (70% research) whereby, as required by MQA, a Board of Study has to be established which is to consist of 5 members from industry and 3 from local higher learning institutions. UM is prepared to expand their facilities and manpower to meet the industry demand to train geoscientists, and is always seeking ways to develop long-term collaboration with industry. We are experiencing many challenges and many more await us.

Keynote 4

Earthquake and tsunami threats to the Malaysian shores of the South China Sea

Н.Д. Тла

Institute for Environment & Development (LESTARI)
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
Email Address: hdtamsp@streamyx.com


The rhombic outline of the South China Sea contains an oceanic portion, a southeastern continental borderland, and the broad continental platform in the west and southwest. Exotic continental blocks occur in the southeast and in the northwest (Fig. 1). Tertiary seafloor spreading that formed the oceanic basin ceased by 15 Ma. This is also demonstrated by the architecture of the Northwest Sabah-Palawan trough as seen on seismic. On the Sabah side of the trough is the leading edge of the Northwest Sabah Overthrust Sheet that comprises Crocker and Trusmadi beds. The NWSOS is overlain by deformed sedimentary sheets produced by gravity sliding on account of active crustal rise of Borneo. Even this gravity tectonics off Sabah has been dormant since the ?early Pliocene or earlier.

(A) Active subduction occurs on the 700 km long east-verging Manila Trench whose earthquakes reach into the order of 7 magnitude. Moderate strength earthquakes in early parts of the 21 century appear limited to regional faults among which are the Tonle Sap (or Mae Ping) end in the Mekong Delta region, the Tubau fault onshore Sarawak, and possibly associated with the Mersing Line, also in Sarawak. Mild earthquakes in Sabah's interior occur in decadal periods. Earthquake-generated tsunami appears limited to tectonic activity of the Manila Trench. Recent simulations indicate that the Sabah and Sarawak coasts could experience tsunami heights of 2 metres within 3.5 to 4 hours of a strong event in the trench (Liu *et al.*, 2007). Arrivals of less than 0.5 m tsunami amplitudes on the east coasts of Peninsular Malaysia are predicted to take more than 6 hours after strong events at the Manila Trench (Ruangrassamee & Saelem, 2009).

Potential, non-tectonically generated tsunamis in the South China Sea comprise (B) large-scale collapse of marine-based volcanic bodies, (C) extensive marine slides, and (D) impacting extraterrestrial bodies.

(B) Active cataclysmic volcanism in the region is exemplified by the 1883 caldera-formation of the Krakatau volcano in Strait Sunda. A kilometre high volcanic island exploded and collapsed into a 250-metre deep caldera. The ensuing tsunami on the coasts of Lampung (South Sumatera) and Banten (West Jawa) reached highs exceeding that of coconut trees and 36 000 lives were lost. The greater effect of that tsunami projected itself into the Indian Ocean. The shallowness of the Sunda Shelf appeared to have substantially reduced the tsunami reach, as Batavia (old Jakarta) only a hundred kilometres away from the caldera recorded sealevels not more than 4 metres higher above normal. Kusumadinata *et al.* (1979) summarised results of historical studies of the Krakatau group. Other active insular volcanoes in the region are in the Babuyan group to the north of Luzon, the Ile de Cendres off the Mekong Delta that erupted in 1923, and the extremely active volcanic Sangir Islands in northern Maluku. Explosive volcanoes commonly develop sector grabens or barancos (Fig. 2). Large sector grabens will almost instantaneously displace large water volumes.

(C) Off the coasts of Brunei and southwest Sabah, 3D seismic records an extensive submarine slide covering an area of \sim 5300 km2, average thickness of 240 m, involving a sedimentary volume of 1200 km³. The slide extends from the land limit of 200-m deep sea floor to the floor of the NW Sabah Trough (McGilvery & Cook 2004). The slide involves the top of the sedimentary sequence and thus indicating a very recent event. In the same region, multiple late Miocene-Pliocene mass movements have earlier been identified by Levell & Kasumajaya (1985). Repeated slumping has been mapped in a 1.5 to 2 km thick sedimentary sequence and is associated with slump scars aligned over a total distance of 150 km along a regional faulted basin edge. The authors attributed

Figure 1: Bathymetry of the South China Sea region. Oceanic depth is in blue. Some of the abbreviations explained: HK Hongkong, MAC Macau, PAR Paracel exotic block, SPR Spratly exotic block, BN Brunei Darussalam, MY Malaysia,, PH Philippines, VN Vietnam.

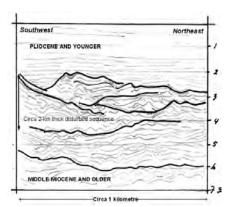
Figure 2: Barranco or sector graben, a common feature on explosive stratovolcanoes. An extinct or dormant volcano, Gunning Seraya, located in line with active volcanoes in Bali; to its west are the Agung volcano and the Batur caldera. Indonesia. At its widest the Seraya barranco is 2.5 km. Fragment of Bali-Indonesia map by Studio Satumata (2005).

the mass movements to either one single event or a series of events over a short time period. Figure 3 is a fragment of a SE - NW regional seismic line that shows about 2 seconds TWT of mass disturbance at the late Miocene-Pliocene level offshore western Sabah. Post-Miocene instability in the region can be attributed to incremental uplift the Sabah land area (Wilford 1968) and regional tilting seaward (Tjia (1983).

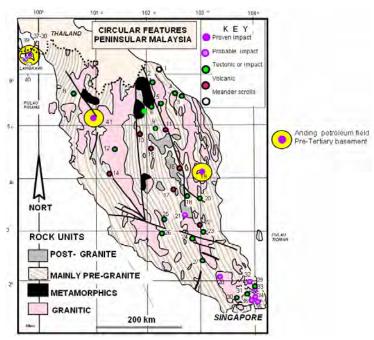
(D) In less than a decade of investigation of extraterrestrial signatures in Malaysia, about half a dozen sites with compelling evidence have been established (Fig. 4). Ring-like topography (two associated with subsurface depressions in Langkawi), shock metamorphic effects in quartz associated with circular topography; impact breccia (suevite), silica-melt bodies occurring as isolated bodies in the target host rock, fragments of iron-rich stony meteorite are among the indicators. To date, most of the impact sites have been discovered in the pre-Tertiary basement of Peninsular Malaysia. Diameters are less than 5 km. However the largest multi-ring topography, 65 km across, is contained in the Palaeogene sedimentary sequence of Sabah in the Marak Parak area. The number of impact sites established in such relatively short period of study in the land area of Malaysia suggests many more impacts of extraterrestrial bodies should have occurred in the greater vastness of the South China Sea region. Impact events are not (yet) predictable, but significant tsunamis generated by meteorites falling into the waters of the South China Sea can be expected to occur.

References

Kusumadinata, K., R. Hadian, S. Hamidi & L.D. Reksawirogo, 1979, Data Dasar Gunungapi Indonesia. Direktorat Vulkanologi: 99-128. Levell. B.K. & A. Kasumajaya, 1985, Slumping at the late Miocene shelf-edge offshore West Sabah: a view of a turbidite basin margin. Geological Society of Malaysia, Bulletin 18: 1-29.


Liu, Y., A. Santos, S.M. Wang, Y. Shi, H. Liu & D.A. Yuen 2007, Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Physics of the Earth and Planetary Interiors, ScienceDirect doi:10.1016/j.pepi.2007.02.012.

McGilvery, T.A. & D.L. Cook, 2004, Depositional elements of the slope/basin depositional system offshore Brunei. Indonesian Petroleum Association, Proceedings "Deepwater and Frontier Exploration in Asia & Australasia Symposium": 407-419.


Ruangrassamee & N. Saelem, 2009, Effect of tsunamis generated in the Manila Trench on the Gulf of Thailand. Journal of Asian Earth Sciences 36: 56-66.

Tjia, H.D. 1983, Quaternary tectonics of Sabah and Sarawak, East Malaysia. Sans Malaysiana 12 (2): 191-215.

Wilford, G.E. 1968, Notes on the geomorphology of Sabah. Geological Survey Borneo Region, Malaysia. Geological Papers 1967: 1-22.

Figure 3: Southwest - Northeast regional geoseismic section offshore and parallel to northwest Sabah shoreline showing late Miocene-Pliocene slump masses about 2 TWT s thick (TWT: two-way-time in seconds; here corresponding to approximately 2.5 km thickness).

Figure 4: Occurrences of established meteorite impact sites in Peninsular Malaysia. Five ring structures in Langkawi represent one serial impact event. Langkawi serial impact sites (37, 38, 39). Luat-Bertam impact sites (41). Bukit Paloh ring (19). Pre-Tertiary basement of Anding field, offshore Kuala Dungun.

Mass extinctions and global warming: lessons from the past for our present and the future

LEE C.P.

Department of Geology, University of Malaya, 50603 Kuala Lumpur Email Address: leecp@um.edu.my

A lot has been written of late about global warming or climate change that is linked to anthropogenic activities like burning of fossil fuels and destruction of natural carbon sinks by deforestation. An Intergovermental Panel for Climate Change (IPCC) was set by the United Nations in 1988 to assess the scientific information relevant to human-induced climate change and make recommendations for mitigation and adaptation to cope with its predicted damaging effects. The most significant contributor to global warming was attributed to the rapid rise of greenhouse gases, especially carbon dioxide and methane, generated by anthropogenic activities since the beginning of the industrial evolution. Some detractors deny this and say that it is global warming that is leading to the higher concentrations of greenhouse gases and not the other way round.

Climate modellers came to the fore with powerful computer simulations to create scenarios both local and global on what would be the possible effects for every degree of rise in average global temperature of the Earth. Most climate models stop at 5°C and beyond that we have to peer into the past and get our clues from what can be inferred from looking at life on Earth in those geological periods when global temperatures were higher than that at present (Lynas, 2008).

Five major mass extinctions have been detected in the Phanerozoic record of life in the past. They had been attributed to various causes that could roughly be grouped into either earthbound eg. glaciation, sea level change, volcanism and oceanic current disruption, or extraterrestrial eg. supernova radiations and bolide impacts. These mass extinctions occurred at the end of the Ordovician, Devonian, Permian, Triassic and Cretaceous (Raup & Sepkoski, 1982). Other less severe and more limited mass extinctions were also detected in the geological record such as at the end of the Jurassic and the Paleocene-Eocene boundary.

Global warming associated with greenhouse gases release had not been considered a prominent contributor until more recently. Chief amongst these are the warmer periods in the Earth's past icluding the Cretaceous, the Jurassic and the end-Permian. The longest lasting greenhouse episode occurred during the Cretaceous where global temperatures were on average 10 to 15°C higher and sea-levels were 200 m or more higher than today's reducing the land surface exposed to about 80% of what exist today (Skelton, 2003). Dinosaurs and alligators roamed the palm forests that grew up to Alaska in an ice-free Earth. Massive thicknesses of chalk were deposited in the warm shallow seas that covered much of the drowned land. The earth was sequestering a lot of carbon dioxide in the lush forests and chalky shells of marine plankton in response to the warming Earth. The presence of giant tempestites, however, tells of intense storms that left big hummocks (Ito et al., 2001) on the ocean floor that tells tales of ferocious hurricanes that were most intense when temperatures were highest in the mid-Cretaceous when carbon dioxide and greenhouse temperatures peaked. The pump was primed for the end-Cretaceous mass extinction as few of the ecosystems we know could survive the extreme temperatures for too long. This was mitigated because many of the plants and animals of the Cretaceous world had a long time to adapt to such high temperatures.

While the greenhouse effect was spread out over a long period in the Cretaceous, the better analogue for the rapid rise in global temperature would be the Palaeocene-Eocene thermal Maximum (PETM) event, that like other warming spikes always seem to be associated with deposition of anoxic black shales indicative of "ocean anoxic events" or OAEs (Jenkyns, 2003). A chief suspect of such catastrophic killing of the oceans is the release of methane hydrates (Kerr, 2000) that warm the climate so severely that the oceans cease to turn over properly leading to oceanic desertification. Severe rainstorms and desert sandstorms in a warmer world could also transfer extra amounts of nutients from land to fertilise the oceans leading to worldwide algal blooms that poison the ocean.

The biggest OAE took place in the Jurassic when carbon dioxide concentrations leap to 1,000 ppm in the atmosphere pushing global temperatures to 6°C. It lead to the biggest mass extinction of the Jurassic-Cretaceous period apparently caused by hot volcanic magma intruding into ancient coal seams across thousands of kilometers of southern Africa (Svensen et al., 2005) to release greenhouse gases that accelerated global warming to strip the oceans of oxygen and killing their inhabitants.

The most devastating mass extinction was the end-Permian that wiped out over 95% of species living both on land and in water at that time. Carbon and oxygen isotope studies across the P-T boundary revealed that there was a very rapid warming of no less than six degrees that changed the Permian world from one that was full of life to a nearly lifeless one within about 10,000 years. The discovery of anomalously abundant soil materials washed into marine deposits in Italy (Sephton,2005) and elsewhere together with a signature 'fungal spike' (Visscher et al., 1996) indicated deforestration that left the land bare (Benton, 2003) with proliferation of fungus on rotting vegetation in the great die-off were caused by desertification as temperatures rose in tandem with carbon dioxide concentrations that reached four times higher than today's (Kidder and Worsley, 2004). It was boosted by a massive injection from the great outpouring of the Siberian flood basalts that also put poisonous sulphur dioxide and nitrous oxides into the atmosphere that came down as acid rain and wiped out many marine organisms drastically affecting the food chain . Oxygen levels dropped to 15% (Weidlich, 2003) killing off many larger land animals while global warming released an estimated 9,000 billion tonnes of methane from unfrozen gas hydrates into the atmosphere. The methane cloud could have been ignited to produce a fuel-air explosive effect (Ryskin, 2003) that nearly destroyed all terrestrial life on Earth. Methane at very high concentrations of 5,000 times background level in the end-Permian together with hydrogen sulphide from rotting organisms, could have destroyed the protective ozone layer allowing deadly UV radiation to bathe the Earth causing harmful mutations (Visscher, 2004). This was followed by a distinct 'coal

gap' in the early to mid-Triassic showing that only sparse vegetation survived after the end-Permian extinction. It took 50 million years for the Earth to recover to the level of pre-extinction biodiversity from the disaster.

A sixth mass extinction is occurring at present and attributed to the destructive input from the human race hence its name the Anthropocene Mass Extinction. This extinction was already underway independent of global warming. Our very destructive species has pushed many plants and animals into extinction with our wanton destruction of the organisms and their habitats forcing more and more of them onto the margins of survival so that just moderate climatic changes will be sufficient to push them over the brink. Anthropogenic carbon dioxide release is at least a hundred times faster than the fastest rates of volcanic outgassing in the past. There would not be time for lifeforms to adapt and the tipping point might be just round the corner.

What can be done to put the brakes on anthropogenic global warming and how much time do we have to do it? Lynas (2008) has helpfully summarized the CO₂ targets we must achieve for the different degrees of warming we aim for in table form (Table1). The way to do it that he advocates is following Robert Socolow and Steve Pacala's (2004) "knocking in wedges" strategy that proposes that we do more with what we are already doing in the different wedges of fighting greenhouse gases emissions to achieve the targets necessary to give us a fighting chance of putting the brakes on global warming. We can fight but I'm not sure we can win.

References

Benton, M. 2003. When Life Nearly Died: The Greatest Mass Extinction of all Time. Thames & Hudson, UK.

Ito, et al. 2001. Temporal variation in the wavelength of hummocky cross-stratification: Implications for storm intensity through Mesozoic and Cenozoic. *Geology*, 29 (1), p. 87-89.

Jenkyns, H. 2003. Evidence for rapid climate change in the Mesozoic-Palaeogene green-house world. *Philosophical Transactions of the Royal Society of London A*, 361. p.1885-1916.

Kerr, R. 2000. Quakes large and small, burps big and old. Science, 287. p.576-577.

Lynas, M. 2008. Six Degrees-our future on a hotter planet. Harper Perennial, London, UK. 346 pp.

Kidder, D. & Worsley, T. 2004. Causes and consequences of extreme Permo-triassic extinction and recovery. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 203 (3-4), p. 207-237.

Raup, D.M. & Sepkoski, J.J. 1982. Mass Extinctions in the Marine Fossil Record. Science, 215. p.1501-1503.

Ryskin, G. 2003. Methane-driven volcanic eruptions and mass extinctions. Geology, 31 (9), p.741-744.

Sephton, M. 2005. Catastrophic soil erosion during end-Permian biotic crisis. Geology, 33 (12), p.941-944.

Skelton, P. (ed.). 2003. The Creatceous World. Cambridge University Press.

Socolow, R. & Pacala, S. 2004. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305. p. 968-972.

Svensen, H. et al. 2007. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. *Earth and Planetary Science Letters*, 256. p.554-566.

Visscher, H. et al. 1996. the terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. PNAS, 93 (5). p. 2155-2158

Visscher, H. et al. 2004. Environmental mutagenesis during the end-Permian ecological crisis. PNAS, 101 (35). p.12952-12956.

Weidlich, O. et al.. 2003. Permian-Triassic boundary interval as a model for forcing marine ecosystem collapse by long-term atmospheric oxygen drop. *Geology*, 31 (11). p.961-964.

Table 1: Projected temperature rise based on carbon dioxide concentrations and actions needed to achieve the targets (after Lynas, 2008).

Degree change	Actual temperature	Action needed	CO ₂ target
One degree	0.1 – I.0°C	Avoidance probably not possible	350 ppm (today's level is 380 ppm)
Two degrees	1.1 – 2.0°C	Peak global emissions by 2015	400 ppm
Threshold for carbon cycle feedback?			
Three degrees	2.1 – 3.0°C	Peak global emissions by 2030	450 ppm
Threshold for Siberian Methane feedback?			
Four degrees	3.1 – 4.0°C	Peak global emissions by 2050	550 ppm
Five degrees	4.1 – 5.0°C	Allow constantly rising emissions	650 ppm
Six degrees	5.1 – 6.0°C	Allow very high emissions	800 ppm

The geochemical fingerprint of the Layang-Layangan Beds, Labuan Island, NW Sabah Basin: Belait or Temburong Formation?

Patrick Gou* & Wan Hasiah Abdullah

Department of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur *Email Address: patrickgou@yahoo.com

Labuan Island is located within the NW Sabah Basin of Northwest Borneo and consists of Tertiary sediments. The island itself is one of the many narrow anticlines in the area that are separated by broad synclines, believed to be formed by syn-sedimentary deformation since the Middle Miocene. The axis of the Labuan anticline plunges to the north.

For decades, the Layang-Layangan Beds that underlie the basal conglomerates of the Belait Formation in the northern part of Labuan Island have been a subject of debate. At present, the camp is mainly divided into two. The opinion that the Layang-Layangan Beds are part of the Temburong Formation (see Lee, 1977; Madon, 1994) is mainly based on its position beneath the Lower Miocene Te5 unconformity (after Brondijk, 1962). Others view that they are part of the Belait Formation (see Wilson, 1964; Albaghdady *et al.*, 2003). The study by Lee (1977) noted that the lack of fossils in the Layang-Layangan Beds is indicative of Belait Formation. An older study by Liechti *et al.* (1960) puts the Setap Shale instead of Temburong Formation beneath the Belait Formation

Limited data from a previous geochemical study on the Miocene sediments on Labuan Island (Albaghdady *et al.*, 2003) indicate that the Layang-Layangan Beds have more similarities to the Belait Formation instead of the Temburong Formation. This is based on several maturity parameters derived from the GC-MS (gas chromatography-mass spectrometry) analysis of rock extracts

This study emphasises the geochemical approach used to characterise the Layang-Layangan Beds when conventional sedimentological, stratigraphic and field observation data is inadequate to address the ambiguity between the Temburong and Belait Formations. Saturated hydrocarbon fractions from outcrop rock samples from the Northwest Borneo area, including Labuan Island were analysed using GC-MS in order to produce geochemical fingerprints of the various geological units. Vitrinite reflectance measurements were also made to complement the GC-MS data. Analysis results of the Setap Shale Formation from nearby Klias Peninsula and Lawas were integrated for comparison purposes. Data from the previous geochemical analysis of Labuan samples by Albaghdady *et al.* (2003) were added to the current dataset for a more comprehensive analysis. In total, 29 samples were included covering various lithologies, i.e. shales, mudstones, siltstones, coals, and carbonaceous/coaly sandstones and shales.

Maturity-related geochemical parameters that have minimal influence from the type of source were selected to describe and characterise the Layang-Layangan Beds. Carbon preference indices (CPI), isomerisation ratios of C_{31} - and C_{32} -hopanes, C_{30} -moretane/ C_{30} -hopane ratios and vitrinite reflectance (%Ro) plotted onto star diagrams clearly indicate the differences between the Belait and Temburong Formations. This in turn made it more obvious and easier to assign the Layang-Layangan Beds into the Belait Formation, based on these geochemical parameters alone.

In addition to that, it is noted that the Kiamsam Series has a geochemical profile similar to the Setap Shale Formation, although the available data is not complete. This is in agreement with the recent findings of Abdullah *et al.* (2009) that highlighted the similar thermal maturities of the Kiamsam Series and Setap Shale Formation (vitrinite reflectance values are between 0.55 and 0.60%). The Temburong and Setap Shale Formations (including the Kiamsam Series) are quite similar to a certain extent. Only the Temburong Formation samples are within the oil generation window (vitrinite reflectance ranging from 0.68 to 0.80%), while the Belait and Setap Shale Formations are mostly immature (vitrinite reflectance ranging from 0.43 to 0.61%). This is consistent with the isomerisation ratios of the C_{31} - and C_{32} -hopanes.

This study is an example of a simple but successful application of geochemical data to support and aid the identification and classification of geological units in outcrop studies. Such a workflow should be considered when conventional lithostratigraphy methods do not work well, particularly when working in areas where the sediments appear similar in outcrops and depositional facies vary abruptly.

References

- Abdullah, W. H., Lee, C. P., & Shuib, M. K., 2009. Coal-bearing strata of Labuan: Mode of occurrence and organic petrographic characteristics. Abstracts, Eleventh Regional Congress on Geology, Mineral and Energy Resources of Southeast Asia, 8-10 June 2009 (pp. 53-54). Kuala Lumpur: Geological Society of Malaysia.
- Albaghdady, A., Abdullah, W. H., & Lee, C. P., 2003. An organic geochemical study of the Miocene sedimentary sequence of Labuan Island, offshore western Sabah, East Malaysia. Bulletin of the Geological Society Malaysia, 46, 455-460.
- Brondijk, J. F., 1962. Reclassification of part of the Setap Shale Formation as Temburong Formation. British Borneo Geological Survey Annual Report, 1962, 56-60.
- Lee, C. P., 1977. The geology of Labuan Island, Sabah, East Malaysia. Unpublished BSc thesis, University of Malaya, Kuala Lumpur.
- Liechti, P., Roe, F. W., & Haile, N. S., 1960. The geology of Sarawak, Brunei and the western part of North Borneo. Kuching: Government Printing Office.
- Madon, M. B. H., 1994. The stratigraphy of northern Labuan, NW Sabah Basin, East Malaysia. Bulletin of the Geological Society of Malaysia, 36, 19-30.
- Wilson, R. A. M., 1964. The geology and mineral resources of the Labuan and Padas Valley area, Sabah, Malaysia (Memoir 17). Geological Survey Borneo Region.

Ripple mark styles in the Belait Formation: Implications on depositional history

Padmanabhan, E.1*, A.S. Mohd Pauzi², M.S. Masnan², M.A. Mokhtar² & Prasanna M.V.³

¹ Petroleum and Geosciences Department, Universiti Teknologi Petronas, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan ² Petronas Carigali Sdn. Bhd. ³ Department of Science and Mathematics, Curtin University of Technology, Miri, Sarawak * Email Address: eswaran_padmanabhan@petronas.com.my

The Belait Formation comprises alternating sandstones, sand and clays in varying proportions and thickness and is believed to have been deposited as an isolated basin infilling oscillating between littoral and deltaic-paralic type. Ripples are occasionally encountered in this Formation. However, there is a lack of information on the kind of ripples present and the link between the ripples and the associated flow dynamics within the Belait Formation. This information is extremely useful for a better understanding of the formation of these sedimentary basins especially for the oil and gas industry.

Therefore, the main objective of this study was to evaluate the ripple marks occurring in an outcrop belonging to this Formation. The specific objectives were to ascertain the origin of these marks, to estimate the principal flow directions and to link the characteristics of the ripple marks to the flow characteristics.

Approximately 800 measurements of ripples were made at this outcrop along three vertical transects. Ripples are generally asymmetrical in cross section and the ripple indices are inconsistent throughout the outcrop. The ripple indices show temporal and spatial variations within and between strata. The majority of the ripples have sinuous in phase patterns. A few strata at the top of the outcrop exhibit linguoid patterns. Principal flow directions as assessed from the ripples were NE or SE.

All strata have fine sand texture. The quartz grains are subrounded and do not exhibit any preferred orientation. Interstitial spaces are filled with iron-oxyhydroxides. Taking into consideration the mean particle size in each strata, the estimated mean flow velocity in a unidirectional sense would be about 0.3-0.4m/s under laminar flow conditions. Evidently, there has been no appreciable increase in this flow rate as there are no evidences of planar stratification in the field.

The change in the flow direction is non-systematic from a temporal perspective. These changes appear to be linked to the meandering nature of the large channel. The study also shows that the Belait Formation has a complex depositional history at the micro and meso-scales of observation.

Paper A4

Ketidaksesuaian kaedah perlindungan cerun – Kajian kes cerun potongan batuan metasedimen terluluhawa tinggi di Malaysia

TAJUL ANUAR JAMALUDDIN

Program Geologi, Pusat pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains & Teknologi, Institut Kajian Bencana Asia Tenggara (SEADPRI),
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
Alamat Emel: taj@ukm.my

Kebanyakan cerun potongan pada batuan terluluhawa di Malaysia dilindungi dan distabilkan dengan kaedah pepaku tanah (soil nails) dan konkrit semburan (shotcrete atau gunite) serta jaring keluli (steel mesh). Kaedah perlindungan cerun sebegini sering digemari oleh pemilik dan jurutera cerun kerana agak mudah dan cepat dibina, walaupun tidak semestinya murah. Namun demikian, pengalaman menunjukkan bahawa struktur perlindungan cerun ini banyak yang gagal, hanya selepas beberapa tahun dipasang. Kegagalan struktur ini antara lainnya berpunca daripada ketidaksesuaian rekabentuknya kerana kurangnya kefahaman tentang kelakuan geomekanik jasad batuan, proses-proses geologi yang berkaitan dan faktor-faktor geologi yang mempengaruhi kestabilan cerun metasedimen yang terluluhawa tinggi.

Di Semenanjung Malaysia, formasi batuan metasedimen lazimnya terdiri daripada batuan syis, filit, sabak dan metakuarzit; berusia sangat tua (Palaeozoik Atas) dan tersebar meluas terutama di Pantai Timur Semenanjung Malaysia serta wujud sebagai pending bumbung di atas jasad batolith Granit Banjaran Utama. Batuan-batuan ini lazimnya berfoliasi, terkekar, terlipat, tersesar dan tericih hebat. Jasad batuan yang sememangnya telah terluluhawa tinggi, jika terdedah ke permukaan akan terurai dan terluluhawa dengan lebih cepat lagi. Penguraian dan penyepaian batuan juga diburukkan lagi oleh faktor pelepasan tegasan (*stress relieve*) apabila bebaban tanah penutup dialihkan seusai kerja-kerja pengorekan dan pemotongan cerun. Kedudukan geomorfologi cerun juga mempengaruhi proses penyepaian jasad batuan ini, terutamanya jika tertakluk kepada pergerakan rayapan. Bahan pembentuk cerun masih boleh terus terluluhawa di belakang lapisan semburan konkrit, hanya dengan kehadiran air yang berpunca daripada resipan dari bahagian atas cerun bukit. Lapisan konkrit itu sendiri, walaupun tegar, bukan jaminan suatu struktur yang tahan lama kerana ia juga terdedah kepada tindakan luluhawa. Dengan rekabentuk sokongan pepaku tanah yang tidak memadai, ditambah

pula dengan kelemahan pada sistem saliran cerun, keseluruhan struktur perlindungan cerun boleh gagal secara mengejut kerana peningkatan tekanan air liang dan tegasan ricih cerun.

Kesimpulannya, struktur semburan konkrit dan pepaku tanah tidak boleh dianggap sebagai suatu struktur perlindungan cerun yang muktamad terutama untuk cerun potongan dalam batuan metasedimen terluluhawa tinggi. Cerun potongan pada jasad batuan metasediemn terluluhawa memerlukan struktur perlindungan cerun yang mempunyai ciri-ciri khas. Diantaranya ialah boleh memerangkap bahan-bahan yang tersepai dari muka cerun akibat penguraian jasad yang berterusan. Bersifat sedikit fleksibel dan tidak terlalu tegar (rigid), mampu menanggung beban yang besar dan boleh menyalirkan air secara bebas daripada jasad cerun serta membenarkan tumbuh-tumbuhan hidup secara semulajadi di atas muka cerun. Struktur yang dimaksudkan ini ialah gabungan struktur jaringan keluli (wire netting) dan jaringan kabel (cable netting) yang diikat ke jasad cerun dengan pepaku tanah atau bolt batuan.

Paper A5

The Kuala Lumpur Outer Ring Road: Engineering geology

TAN, B.K.

Consultant Engineering Geologist, Petaling Jaya Email Address: tanboonkong@gmail.com

The Kuala Lumpur Outer Ring Road (KLORR) has been planned for easing traffic congestion in the Kuala Lumpur area. Various options for the KLORR route alignment have been looked into. The route studied cuts across the Klang Gates Quartz Ridge in the vicinity of the Klang Gates Dam, and two options for this crossing have been examined, namely: Option 1 (viaduct) versus Option 5 (tunnel). A comparative study of these two options was conducted, and the results of this study are shown in Table 1. Based on the results in Table 1, the viaduct option (Option 1) is selected/recommended.

Additional notes on the geology/engineering geology of the KLORR project include:

TUNNEL

minor, at portals only

- i) the northern section of the KLORR project area is underlain almost entirely by Granite. Vein quartz protrudes above the granite in the form of the prominent Klang Gates Quartz Ridge.
 - ii) the Klang Gates Quartz Ridge represents a strand of the Kuala Lumpur Fault Zone. The faults are inactive.
- iii) the geological constraints and geohazards include slope instability/landslide, rockfall, and problems associated with tunnelling and viaduct construction.

Table 1: Comparison of tunnel (Option 5) versus viaduct (Option 1).

Rockfall	minor, at portals only	major, esp. from quartz ridge
Construction Difficulties	high degree of difficulties,	less difficult; progress faster
	esp. in quartz ridge; progress slow.	
Blasting	required; heavy blasting	not required
	in quartz ridge	
Damage to Dam	possible, from blast vibrations	no blast damages
Reservoir Leak	potential leak from blast-induced	no leak
	fractures (disastrous)	
Environmental Impact	noise/ground vibrations during	minimal during construction;
	construction; none after construction	none after construction
Scenic View	none (long black hole)	scenic view after opening of
		highway (reservoir & ridge)
Security Concern for Dam	none/minimal (unless someone	some concern since highway
,	blows up the tunnel near the dam)	flies over the dam/reservoir
Cost	high, esp. tunnelling in quartz ridge	significantly lower
		• •

VIADUCT

major, esp. from colluvium

FACTOR

Slope Instability

Perbandingan kaedah penentuan kekuatan ricih batuan granit

GHANI RAFEK, A.*, GOH, T.L., HARIRI ARIFFIN, M., & BAIZURA YUNUS, N.

Program Geologi, Pusat Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Alamat Emel: aghani@ukm.my

Penentuan kejelekitan dan sudut geseran dalaman bahan batuan lazimnya dilakukan dengan ujian tiga paksi. Sebagai pilihan ujian ricih terus keatas bahan batuan juga dapat menghasilkan nilai kejelekitan dan sudut geseran dalaman. Syor yang dikeluarkan oleh *International Society for Rock Mechanics* (ISRM, 1981), menjelaskan pengaruh tegasan terhadap nilai kekuatan ricih yang diperolehi semasa ujian dijalankan, khususnya pada nilai tegasan normal yang rendah. Dengan mengambilkira perkaraperkara ini dan kemampuan peralatan ricih sedia ada yang hanya dapat membekalkan tegasan normal yang agak rendah, tiga pendekatan digunakan untuk penentuan kekuatan ricih batuan granit. Yang pertama adalah berdasarkan ujian ricih terus di makmal terhadap bahan batuan. Pendekatan kedua dan ketiga adalah berdasarkan syor Goodman, di mana untuk pendekatan kedua nilai purata kekuatan mampatan sepaksi dan kekuatan regangan digunakan untuk membina sampul Mohr-Coulomb, manakala dalam pendekatan ketiga kekuatan mampatan sepaksi dan tiga kali ganda kekuatan regangan digunakan untuk pembinaan sampul Mohr-Coulomb. Ketiga-tiga hasil juga dibandingkan dengan nilai yang dilaporkan dalam literatur, seperti oleh Hoek & Bray (1981) dan Goodman (1989).

Berdasarkan ujian ricih terus di makmal keatas batuan granit segar, nilai purata kejelekitan, C adalah 7.3 MPa dengan sudut geseran dalaman, Φ mempunyai nilai 68.3°. Untuk pendekatan kedua, masing-masing nilai purata adalah C = 15.5 MPa dan $\Phi = 59.0$ °, manakala bagi pendekatan ketiga nilai purata tersebut ialah C = 24.0 MPa dengan $\Phi = 43.2$ °. Goodman melaporkan nilai C = 55.1 MPa dengan $\Phi = 47.7 - 51$ ° untuk granit, manakala Hoek & Bray melaporkan nilai C berjulat antara C = 35.0°. Keputusan dan penilaian ini menunjukkan bawah kekuatan ricih bahan batuan bersifat dwilinear dan tegasan normal berperanan penting dalam penentuannya. Untuk kes sebenar, tegasan normal yang akan tertindak perlu diberi perhatian dalam pemilihan nilai yang sesuai.

Rujukan

Goodmans, R.E., 1989. Introduction to Rock Mechanics. Second Edition. John Wiley, 562 p.

Hoek, E. & Bray, J.W. 1981. Rock Slope Engineering . 3rd edn. London: Institution of Mining and Metallurgy, 402 p.

International Society for Rock Mechanics (ISRM), 1981. Rock characterisation, testing and monitoring - ISRM suggested methods. Oxford, Pergamon.

Paper A7

Engineering properties of limestone from Pandan Indah, Kuala Lumpur

Mohd For Mohd Amin^{1*}, H.M. Abdul Aziz K.M. Hanifah², Amir Hamzah Mustapha² & Edayu Saleh @ Aman²

¹Faculty of Civil Engineering, UTM Skudai, Johor ² Unit Geoteknik & Jalan, Ibu Pejabat JKR, Kuala Lumpur *Email Address: mohdfor@utm.my

An elevated intersection has been proposed along MRR II at Pandan Indah, Kuala Lumpur. Relevant properties of the in situ bedrock are required for the design of this major structure. For this purpose, various types of laboratory test were conducted that include uniaxial compression, Brazilian, point-load and ultrasonic velocity. The tests were conducted on samples collected from 3 locations, Site S1, S2 and S3, at the proposed site. More than 500 fresh (Grade I) rock samples were tested. In the compression test, axial and radial strains of the samples were measured for the determination Young's modulus (E) and Poisson's ratio (v). Effect of moisture on compressive strength was also investigated by testing saturated samples. The test results show the compressive strength (UCS) of Limestone varies between 14 and 139 MPa. Its tensile strength is between 0.5 to 14 MPa, which is less than 10 % of its UCS. The range of Point-load index strength is between 0.4 and 6 MPa, while its surface compressive strength (based on rebound number R) ranging between 23 and 105 MPa. The rock constant E range between 10 and 88 GPa, and υ between 0.04 and 0.53. Based on the three locations, samples from site S3 seem to exhibit the highest strengths (compressive, point-load and tensile) while samples from site S1 exhibit the lowest strengths. Observation made on samples indicates that the cores from site S1 display smallscale fractures/cracks. These existing fractures may have induced premature failure in some of the samples. In fact these fractures have also contributed to erroneous strain data in a number of tests, consequently resulting in the E and v value that are lower than expected. There are trends indicating reduction in the samples strength due to saturation, and the range is about 10 to 30% lower than the dry samples. However, for sound and strong rock like limestone this reduction may not necessarily due to moisture content as it could also be contributed by samples variation and accuracy of machine used in the test.

Correlation between Modified Slope Mass Rating (M-SMR) system with lithofacies of the Crocker Formation in Kota Kinabalu, Sabah, Malaysia

Ismail Abd Rahim*, Sanudin Hj. Tahir & Baba Musta

Universiti Malaysia Sabah, Locked Bag 2073, 88999 Kota Kinabalu, Sabah *Email Address: arismail@ums.edu.my

The aim of this paper is to correlate the Modified Slope Mass Rating (M-SMR) classes with the lithofacies of Crocker Formation in the Kota Kinabalu, Sabah area. The rock cut slopes in CPSB Stone Quarry (slope B1 and B3) and Lakang Point (slope LP) in Tamparuli, Tuaran Hospital (slope TH) in Tuaran and Telipok-Sulaman by-pass (slope TS1 east, TS1 west, TS2 east and TS2 west of Telipok) in Telipok were selected for this study. The 'Lithological unit thickness' approach, MRQD method, weighted average of discontinuity set spacing, weighted average of discontinuity condition, normal condition of water flow and discontinuity orientation factor (DOF) method were used to evaluate the unconfined compressive strength, RQD, discontinuity spacing, discontinuity condition, water flow and discontinuity orientation parameters for Modified Slope Mass Rating (M-SMR) system, respectively. The lithological logging mapping and petrographical study were applied in order to determine the facies association for the Crocker Formation. Slope TS1 east, TS2 west and LP representing class II ('low risk' slope), slope B3 and B4 class III ('moderate risk' slope), slope B1, TS1 west and TS2 east class IV ('high risk' slope) and slope TH class VI ('extremely risky' slope) in the study area. The facies types in the study area consist of very thick-bedded sandstone unit (facies B), thick to medium-bedded sandstone unit (facies C), thin-bedded sandstone unit (facies D), thin-bedded siltstone and/or sandstone unit (facies E) and thick-bedded shale unit (facies F). In the study area, the facies unit formed the associations namely channel (slope LP, TS1 east and TS2 west), channel-lobe (Slope B1, B3 and TS2 east), lobe prograding (slope TS1 west) and basin plain (slope TH). The results of analyses shows that the channel facies is represented class II, channel-lobe facies class III and IV, migrating lobe facies class IV and basin plain facies class VI of M-SMR system.

Paper A9

Pengaruh hidrokarbon terhadap cirian geoteknik tanah baki tercemar minyak

Z. A. RAHMAN, N. AHMAD*, U. HAMZAH & W. Z. W. YAACOB

Program Geologi, Pusat Pengajian Sains Sekitaran & Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Alamat Emel: zarah1970@ukm.my

Kemasukan bahan hidrokarbon bersifat cecair ringan tidak larut (LNAPL) seperti minyak pelincir enjin, minyak mentah dan diesel ke ekosistem tanah telah menyebabkan pencemaran yang serius dan sukar dibersihkan. Pencemaran bahan hidrokarbon bukan sahaja mempengaruhi kualiti malah mengubahsuai sifat-sifat geoteknik tanah.

Kajian ini bertujuan untuk melihat kesan pencemaran hidrokarbon ke atas sifat-sifat geoteknik tanah baki basalt dan metasedimen. Penentuan sifat-sifat fizikal tanah yang dikaji meliputi analisis saiz butiran, ujian spesifik graviti serta ujian pembelauan sinar-x (XRD). Manakala sifat geoteknik yang diperhatikan adalah had Atterberg, sifat pemadatan, konduktivi hidraulik dan kekuatan tiga paksi (Ujian Tiga Paksi Tak Tersalir Tak Terkukuh, UU) terhadap sampel yang tidak tercemar dan tercemar dengan bahan pencemar pada ketumpatan yang sama. Sampel-sampel tanah tercemar disediakan dengan mencampurkan bahan hidrokarbon pada kandungan berbeza iaitu 4%, 8%, 12% dan 16% terhadap berat kering. Perbandingan hasil dilakukan di antara sampel tanah tercemar dan tidak tercemar.

Berdasarkan analisis saiz butiran, sampel tanah asalan basalt mengandungi 41% pasir, 51% lodak dan 8% lempung manakala sampel tanah metasedimen terdiri daripada 4% pasir, 43% lodak dan 29% lempung. Hasil analisis XRD pula menunjukkan sampel tanah basalt mengandungi mineral kaolinit, gibsit dan goetit manakala sampel metasedimen hanya mengandungi mineral kuarza dan kaolinit. Nilai spesifik graviti bagi tanah basalt dan metasedimen masing-masing adalah 2.91 dan 2.61. Bagi kedua-dua jenis sampel tanah yang dikaji, penentuan nilai-nilai had Atterberg menunjukkan had cecair, W, dan had plastik, W, telah menyusut kesan daripada penambahan kandungan hidrokarbon dalam tanah. Nilai W, untuk sampel tanah basalt adalah berjulat 66% - 41% manakala untuk sampel tanah metasedimen, julatnya adalah 43%-37%. Sementara nilai W_p untuk sampel basalt adalah di antara 35%-29% manakala nilai W, bagi sampel tanah metasedimen adalah antara 19%-24%. Pertambahan kandungan hidrokarbon juga menyusutkan nilai-nilai ketumpatan kering maksimum, $ho_{dry\;max}$ dan kandungan air optimum. Nilai W_{opt} bagi sampel basalt adalah berjulat 23.36% - 16.53% manakala bagi sampel metasedimen adalah berjulat antara 8.4% sehingga 21.9%. Nilai $\rho_{dry max}$ bagi kedua-dua sampel pula adalah berjulat 1.6 g/cm³ - 1.56g/cm³ bagi sampel basalt manakala 1.58g/cm³ sehingga 2.0g/cm³ bagi sampel metasedimen Ujian tiga paksi pula menunjukkan nilai-nilai kekuatan ricih tanah, C, yang berjulat 78kPa hingga 24kPa bagi sampel 0%-16% basalt manakala 27kPa hingga 8kPa bagi sampel 0% - 16% metasedimen. Kekuatan ricih tanah tidak bersalir, C turut menunjukkan penurunan nilai dengan pertambahan hidrokarbon dalam tanah-tanah yang dikaji. Jelas diperhatikan bahawa kehadiran bahan pencemar hidrokarbon telah menyebabkan sifat-sifat geoteknik tanah yang dikaji berubah berbanding tanah tidak tercemar.

The need for independent post-survey quality control to check the high failure rate of geohazards predictions

LIM, B.K.

Email Address: hydrocomgeo@gmail.com

Unanticipated geohazards are the single highest cause of project or drilling failures. Sound project management and decisions can only be made on the basis of reliable and accurate geohazards predictions and risk assessment. Yet interpretation and geohazards prediction skills are seldom considered in the selection of geohazards survey contractor. In any geohazards survey contract, the interpretation of the geophysical data and geohazards prediction receive the least attention and remain the least important factor, despite being the sole cause of any geohazards disaster.

Despite the technological advances in data acquisition and increasing sophistication in data processing and imaging software, interpretation expertise in engineering geohazards surveys continue to be stuck in the "muddy waters" of mystic yesteryears. Reflecting on the past 30 years of experience in the industry, it is clear that modernization has largely bypassed this critical skill in geohazards prediction. The many factors contributing to this stagnation are highlighted in this paper to jolt the industry into realizing this neglect and its dire consequences. Not only has the development of interpretation skills stalled; there seems to be an industry-wide deterioration of geohazards assessment and interpretation capability as well. When fundamentally-flawed interpretation is blindly and repeatedly copied without due geological consideration and lessons learnt from past disasters seem forgotten, it is time to sit up and remedy this untenable situation before things get worse.

The fact that such serious mistakes could routinely slip through top geohazard specialists and contractors, speaks volumes of the interpretation malaise affecting the industry. Some of the more crucial and costly interpretation failures are highlighted to argue for the need for independent quality control (QC) on geohazards assessment and interpretation. The current emphasis on field QC during data acquisition is understandable since data acquisition cost is many times the cost of post-survey interpretation. As the final site survey results can only be as good as the expertise behind the interpretation, it pays to QC the geophysical interpretation, given the number of past failures.

Being a poor cousin to the exploration sector, the lack of experienced interpreters has always been an industry-wide problem as experienced and talented geophysicists seek professional advancement in the more lucrative exploration sector. Under current industry's practice, geophysical contractors bear the sole responsibility of geophysical interpretation. Although all geophysical data acquired technically belong to the Clients or project owners, very seldom were the data requested for quality control purposes.

Besides minimizing human errors and providing experienced guidance, expert QC consultants can readily identify shortcomings in the contractor's interpretation expertise that are normally not apparent during the fast-paced field acquisition phase. Furthermore, interpretation work is normally quoted on lump sum basis; thus making it difficult to quantify the amount of interpretation work or time input. With the constant shortage of experienced geophysicists, post survey QC is a necessity to look after the Clients' interests.

Without post survey QC, the interpretation of site survey data is often reduced to over-simplified charting and meaningless choices of low-moderate to high-moderate risk of gas hazards. Even when favourable site conditions or geological factors were apparent in the site survey data, opportunities to capitalize on them for project benefits were normally ignored; basically because there were no instructions from the Client to do so. Without a knowledgeable QC review, such valuable information might not even surface for due consideration.

By their ambiguous nature, interpretation errors are conveniently attributed to various factors such as limited work scope, resolution, accuracy, penetration etc, rather than technical incompetence. Furthermore, failures to detect potential geohazards or geotechnical problems are not easily recognized as mis-interpretation as they do not necessarily manifest into immediate disasters. Investigation into past major disasters such as the 1990 Barton Blowout, revealed how an initially flawed interpretation (in the early eighties) was blindly adopted; leading to subsequent mis-interpretation in later surveys (by no less than 3 survey contractors) which further compounded the initial mis-interpretation. If the present authors had not persisted on disputing the flawed survey results, the truth might never have surfaced. Immediately after the blow-out, the Barton-A platform was evacuated and destined for shutdown on the perceived fear of platform instability and imminent collapse due to the "unstable soft sediment within the sub-seabed depositional basin". A QC review of the past surveys' interpretation revealed an appalling series of site survey mis-interpretation and over-turned the impending shutdown of the platform. Now more than 19 years later, the said platform had not failed as initially feared following the blowout. This is one of the many prime examples where costly disasters could have been averted, had the early erroneous interpretation and geological inconsistencies been detected by routine QC on geophysical interpretation.

Even though it was geologically inconsistent to have a large depositional basin at the apex of an outcropping anticline structure, the highly faulted complex structure was nevertheless mistakenly interpreted as such. Although abnormally high circulation losses were reported in all the drilling preceding the fateful blowout, the pre-drill site surveys continued to chart patches of cement on the seafloor as coral outcrops despite evidence to the contrary. The disbelief that drilling cement meant to seal the well-bores could resurface through the pervious faults was proven to be true when ROV recovered cement fragments from the erroneously charted "coral outcrops". The series of interpretation errors epitomize the need for independent expert QC on geophysical interpretation. Sadly the Barton Blowout is not an isolated case.

Kebolehrentanan bencana gelinciran tanah (LHV): Sorotan literatur dan cadangan pendekatan baru untuk pengurusan risiko gelinciran tanah di Malaysia

RODEANO ROSLEE 1* & TAJUL ANUAR JAMALUDDIN 2

¹Program Geologi, Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, Beg Berkunci 2073, 88999 Kota Kinabalu, Sabah ²SEADPRI, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Alamat Emel: rodeano@ums.edu.my

Topik berkenaan kebolehrentanan bencana gelinciran tanah (LHV) masih dianggap baru dan kurang mendapat perhatian di kalangan geosaintis dan jurutera di Malaysia. Kebolehrentanan ditakrifkan sebagai darjah kerugian (kerosakan) bagi sesuatu elemen atau elemen-elemen yang berisiko akibat berlakunya fenomena semulajadi yang bertindak balas pada suatu magnitud tertentu (Varnes, 1984). Walaupun terdapat beberapa garis panduan dan polisi berkenaan pembangunan di kawasan berbukit bagi mengatasi gelinciran tanah, namun bilangan gelinciran tanah di seluruh negara yang membawa kepada malapetaka semakin terus meningkat. Kertas penyelidikan ini cuba mengupas dan merumus konsep LHV dengan mengambilkira pendekatan aspek sosio-ekonomi dan sains. Pendekatan baru dalam konsep kebolehrentanan bagi penyelidikan pengurusan risiko bencana gelinciran tanah di Malaysia juga turut diperkenalkan. Untuk merealisasikan matlamat ini, suatu rangka kerja telah direkabentuk untuk menaksirkan kebolehrentanan manusia, fizikal dan persekitaran terhadap bencana gelinciran tanah. Rangka kerja ini dirumuskan secara semi-kuantitatif melalui pembangunan pengkalan data elemen-elemen berisiko (manusia & kewangan) yang berdasarkan kepada maklumat daripada sorotan literatur yang ekstensif dan pencerapan lapangan. Parameter-parameter LHV daripada literatur dianalisis secara statistik untuk menilai kepentingannya supaya dapat diterima dalam model penyelidikan pengurusan risiko gelinciran tanah (LRM) yang praktikal bagi keperluan keadaan tempatan. Antara parameter-parameter yang diambilkira dalam menilai LHV termasuklah status sosial (kecederaan fizikal, kehilangan nyawa dan tempat tinggal), implikasi fizikal (kerosakan harta benda, bangunan, kelengkapan dalaman dan kemudahan infrastruktur) dan gangguan terhadap persekitaran (masa terjejas, operasi harian dan pelbagai). Setiap parameter yang diambilkira dalam penaksiran kebolehrentanan diperuntukkan nilai perkadaran tertentu yang berjulat dari 0 (0% kerugian/kerosakan), 0.25 (1-25% kerugian/kerosakan), 0.50 (26-50% kerugian/kerosakan), 0.75 (51-75% kerugian/kerosakan) hingga 1.00 (75-100% kerugian/kerosakan). Langkah selanjutnya adalah mengira jumlah nilai purata bagi ketiga-tiga jenis kebolehrentanan sosial, fizikal dan persekitaran yang kemudiannya dikelaskan kepada lima kelas darjah kebolehrentanan, iaitu kelas 1 (<0.20) (kebolehretanan sangat rendah), kelas 2 (0.21-0.40) (kebolehrentanan rendah), kelas 3 (0.41-0.60) (kebolehrentanan sederhana), kelas 4 (0.61-0.80) (kebolehrentanan tinggi) dan kelas 5 (> 0.81) (kebolehrentanan sangat tinggi). Hasil kajian ini mendapati bahawa nilai perkadaran LHV di Malaysia adalah jauh lebih tinggi berbanding dengan negara-negara maju. Hal ini antara lainnya disebabkan oleh kurangnya kesedaran awam, pengetahuan dan pendedahan mengenai gelinciran tanah; serta kekurangan kod-kod bangunan dan ketiadaan penilaian rekabentuk kejuruteraan yang mengambil kira faktor-faktor pencetus bencana (hujan lebat/gempa bumi). Perkiraan perkadaran kebolehrentanan tidak dapat ditentukan secara kuantitatif semata-mata kerana ianya memerlukan data pencerapan lapangan yang disokong oleh data sekunder secara relatif.

Landslide Hazard Vulnerability: Review of literature and a proposed new approach in landslide risk management for Malaysia

Topic on landslide hazard vulnerability (LHV) in Malaysia is relatively new and received little attention from geoscientists and engineers. Vulnerability is defined as the potential degree of loss (damage) to a given element or risk elements resulting from the occurrence of a natural phenomenon of a given magnitude (Varnes, 1984). Although there are some guidelines and policies regarding hillside development to prevent landslide, the number of disastrous landslides is steadily increases nationwide. This research papers try to review and formulate the concept of LHV by taking into account the socio-economic and science aspects. New approach in vulnerability concept for research in landslide risk management in Malaysia is also introduced herein. To achieve this goal, a framework was designed for assessing the human, physical and environmental vulnerabilities to landslide hazard. The framework was formulated semi-quantitatively through the development of database for the risk elements (human & financial) based on informations from the extensive review of literature and field observations. LHV parameters from the literature were analysed statistically to evaluate their significance in developing an acceptable and practical model for landslide risk management (LRM) that will suit best to the local conditions. The parameters include: social status (physical injury, loss of lives and accommodation), physical implication (property damage, building, internal materials and infrastructural facilities) and interference on environment (affected period, daily operation & diversity). Each considered parameters in the vulnerability assessment is allocated with a certain rating value ranges from 0 (0 % loss/damage), 0.25 (1-25 % loss/damage), 0.50 (26-50 % loss/damage), 0.75 (51-75 % loss/damage) and 1.00 (75-100 % loss/damage). The next step is to count up the total average value for the three types of human, physical and environment vulnerabilities. The value is then classified into five classes of vulnerabilities, namely class 1 (< 0.20) (very low vulnerability), class 2 (0.21-0.40) (low vulnerability), class 3 (0.41-0.60) (medium vulnerability), class 4 (0.61-0.80)

(high vulnerability) and class 5 (> 0.81) (very high vulnerability). Results from this study indicate that the rating value for the vulnerability on landslide hazard in Malaysia is generally higher than those of the developed countries. This is mainly due to poor awareness, knowledge and exposure amongst the public, as well as poor building codes and lack of consideration on the hazard triggering factors (intense rainfall and earthquake). It is also noted that the rating of vulnerability cannot be simply determined quantitatively because it requires data from field observations supported by the relative secondary data.

Paper A12

Geospatial information system of karst land use evaluation in Kinta Valley, Malaysia

Omar Alkouri* & Ros Fatihah

Department of Geology, University of Malaya, 50603 Kuala Lumpur *Email Address: Okouri@um.edu.my

Remote sensing and Geographic Information System (GIS) have been proven to be powerful tools for mapping analysis. In contrast, the conventional methods of mapping land use changes are costly and low in accuracy. Remote sensing provides updated information on land use changes. With the spatial and temporal imaging capability of remote sensing, changes in land use due to natural events and human interferences can be monitored using current and archived remotely sensed data. Kinta valley have been deteriorating dramatically as a result of changes that have occurred in the past and continues due to the close relationship between the fast rate of lateral urbanization and extensive dimensional expansion of mining activities (tin and quarrying). The segmentation classification method is based on various scales determined by range of scale parameters, leading to the formation of a hierarchical network of objects. Geospatial technology and Remote Sensing have opened up opportunities for qualitative analyses of landuse changes and can be helpful in managing this sensitive area. The objective of this paper is to highlight the usefulness of Geospatial Information System as a tool to visualize and define the karst degradation changes. It was found that quarry operation has increased from 1991 to 2004 (12.70% - 20.76%) due to human activities. The urban area has been increased from 15.70% to 18.10% during the period from 1991 to 2004 especially in the northern part of the Kinta Valley. New occurrences of sinkhole are detected spatially after tsunami earthquake 26 of December 2004. The results will assist local authorities, urban planners, and citizens to avoid potential hazardous areas by using the occurrences of sinkholes map.

Paper A13

Kajian penderiaan jauh kawasan Saratok-Pengajar, Sarawak

Mohd Yusop Bin Ramli, Mohd Anuar Bin Ishak & Mohd Ezwan Bin Dahlan

Jabatan Mineral dan Geosains Malaysia, Sarawak

Pemetaan Geologi kawasan Saratok-Pengajar berskala 1:50,000 merupakan kawasan yang mula-mula dipilih untuk dilaksanakan dalam projek Pemetaan Geologi Negara di Sarawak di bawah Rancangan Malaysia Ke-9. Sebagai langkah awalan bagi memahami kawasan yang akan dikaji, kajian penderiaan jauh ini dilakukan.

Kajian penderiaan jauh dilakukan dengan menggunakan segala bentuk peralatan dan perisian yang tersedia. Ini termasuklah komputer, perisian Erdas Imagine, ArcviewGIS, ArcGIS, imej Landsat7ETM Sri Aman (120/59), imej RADARSDAT Sarawak dan SRTM. Turut didigitalkan adalah peta-peta geologi daripada kajian terdahulu yang melibatkan kawasan yang kini dikaji.

Kajian ini menonjolkan banyak maklumat geosains yang baru. Lima pola pematang berjaya dicirikan yang secara langsung menggambarkan corak perlapisan batuan. Sebanyak 26 garisan sesar dikenalpasti dan dikelompokkan kepada empat corak utama. Gabungan tekstur, tekstur mikro dan bentuk-bentuk muka bumi yang lain membantu pemecahan unit batuan kepada tiga unit.

Penemuan-penemuan yang diperolehi digunapakai secara terus di lapangan melalui paparan arcpad yang disokong oleh peranti GPS. Ia membantu menafsirkan fitur-fitur geologi di lapangan. Penemuan-penemuan ini membantu merubah peta geologi yang lama di kawasan berkenaan. Oleh itu, pengkaji-pengkaji perlu mengguna-pakai teknologi yang tersedia di sekeliling mereka secara optimum.

Application of the analytical hierarchy process(AHP) to groundwater potential mapping in upper part of Langat Basin

Mohamad Abd Manap^{1*}, Wan Nor Azmin Sulaiman², Mohammad Firuz Ramli², Noraini Surip³ & Mohd Armi Abu Samah²

Minerals and Geoscience Department, 19-22th Floor, Bangunan Tabung Haji, Jalan Tun Razak, 50658 Kuala Lumpur ²Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor ³Malaysian Remote Sensing Agency (Remote Sensing Malaysia), No 13 Jalan Tun Ismail, 50480 Kuala Lumpur *Email Address: mohdabdmanap@yahoo.com

In Malaysia, groundwater is always being national issues and rises as an alternative source for water supply especially during drought season. Groundwater resources in Malaysia also are being underutilized compare to other nations such as Thailand, China, Austria and Denmark. Conventional approach of groundwater exploration using geological, hydrogeological and geophysical method normally involved high budget and time consuming. Remote sensing technique provides advantages of spatial and spectral data, having access to large coverage and inaccessible areas with regular revisit capability. Meanwhile Geographical Information Systems (GIS) was used to integrate the spatial layers, handling and analysing the large amount of data. The main objective of this paper is to integrate remote sensing, GIS and multi criteria analysis of Analytical Hierarchy Process (AHP) in identifying groundwater potential zones in the Upper part of Langat Basin, Selangor.

The study area covers parts of the Upper Langat Basin and located in Hulu Langat district of Selangor state, Malaysia. It is within the latitude 2 53' north to 3 15' north and longitude 101 43' east to 101 58' east, with an area of around 500 km square. In this study, eight thematic layers of groundwater parameters i.e. lineament, geomorphology, rainfall, lithology, drainage, landuse, slope, and soil were extracted from satellite images and available maps. Remote sensing data of Landsat imagery was interpreted to produce lineaments, and geomorphology. DEM (Digital elevation model) was used for lineaments, geomorphology and slope. Meanwhile drainage, landuse, lithology and soil were extracted from ancillary maps data. The assigned weights for groundwater parameters were normalized using AHP.

The result of predicted map has been classified into four classes of groundwater potential zones: very high, high, moderate and low. Very high groundwater potential constitutes only about 15% of the total area. High potential category has about 17% meanwhile about 33% comprised of moderately groundwater potential. Areas with low potential constitute 34% of the total study area. Actual bore well yield data compiled by the Department of Minerals and Geoscience, Malaysia (JMG) were used for model validation. Accuracy assessment of predicted groundwater potential map with bore well yield was performed using correlation coefficient. The correlation coefficient result is equal to 0.72. It concluded that the output of this integrated approach is cost effective techniques in investigating groundwater potential zones in Malaysia. These outputs can be used for future planning of groundwater exploration and development by related government agencies and private sectors in Malaysia.

Paper A15

Physico-chemical behavior of carbonaceous shale at Batu Gajah, Perak: Their problems and mitigation

ASKURY ABD KADIR*, ANGGA PRATAMA HERMAN, AMINUR RASHID MOHD SHARIAI & AARON SUBASH GEORGE

Geoscience & Petroleum Engineering Department, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak *Email Address: askury_akadir@petronas.com.my

The Paleozoic carbonaceous shale exposed around Batu Gajah is interbedded with sandstone and siltstone, which is sandwiched in between Kinta Limestone over a total thickness estimated to be about 3,000 m. It deposited within deep marine environment indicated by the dissemination of reduction pyrite. The exposures along Seputeh-Batu Gajah (new road) were studied whenever numbers of slope failure occurred along the stretch, as well as stained road surfaces and drains, which is believed trigger by the material properties of black shale. Chemical weathering is the only factor that contributes to the change of chemical and physical properties of the carbonaceous shale. Acid rock drainage (ARD) is one of the environmental problem occurred and it produced by the oxidation of sulphides minerals, such as pyrite and marcasite (FeS₂). Both of these phenomena can affect the physical and chemical properties of the carbonaceous shale. Acid Rock Drainage is found around the world both as a result of naturally occurring processes and activities associated with land disturbance such as highway construction and mining where acid-forming minerals exposed to the air and water. These acidic can cause metal in geologic material to dissolve, which can cause a very serious contamination and damage the environment for the flora and fauna around the area. Acidic soil contributed by pyrite oxidation in carbonaceous shale has a very low pH near 3. An appropriate method need to be implemented in order to treat the acidic soil problem. Due to the high acidity, plants or vegetation are unable to grow. The growth of plants or vegetation is important because the roots of the plant can serve as natural fiber reinforcement and will increase the resistance to slope failures. Pyrite oxidation, also referred to as pyrite disease or pyrite decay, is identified by a sulphuric acid odor, white crystalline powder, yellow sulphide powder, and/or gray to yellowish microcrystalline mass in and out of specimens. One of the important approaches to prevent pyrite

oxidation is to create a surface coating on pyrite. In the study conducted, a coating of iron 8-hydroxyquinoline was formed by leaching pyrite with a 0.10M H₂O₂/0.0034 M 8-hydroxyquinoline solution; stability of the coated pyrite was tested under various pH and temperature conditions. It shown the iron 8-hydroxyquinoline coating could significantly suppress further pyrite oxidation by both chemical (H₂O₂) and biological (*Thiobacillus ferrooxidans*). Ammonium gas and ethanolamine thioglycollate treatments neutralize sulphuric acid and remove ferros-sulphate, and are reportedly effective in partly or completely removing oxidation reaction products. Calcium carbonate or limestone powder can also be utilized to treat the ARD, where the exposed black shale covers by calcium carbonate, and then cover back by layer of softwood and hardwood. These mitigation methods suggested can be implemented to enhance the growth of grass and stabilize slopes.

Paper A16

Occurrence of pyrite in the coastal plains as an evidence for the rise of sea level in the Malay Peninsula during the Holocene

ENIO KANG*, M.S., J. SHAMSHUDDIN, C.I. FAUZIAH & M.H.A HUSNI

Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor *Email Address: eniokang0505@gmail.com

The presence of sandy beach ridges in the Kelantan Plains has been used an indication of the rise of sea level during Holocene. Pyrite is found in some of the sediments in these coastal plains and this pyrite can only be formed in the presence of sea water. A study was conducted in the Kemasin-Semerak Integrated Agricultural Project, Kelantan to explain the formation of pyrite in the area. A survey was carried out to determine the location where pyrite was found in the area. Soil samples were collected according to depth (0-15, 15-30, 30-45, 45-60 cm) and analyzed for chemical and mineralogical properties. After 2 weeks of exposure to the atmosphere, the samples from the depths of 30-45 and 45-60 cm were found to produce yellowish mottles, which were found to be jarosite $(FeK_3(SO_4)_2(OH)_6)$. This jarosite must have been formed by the oxidation of pyrite (FeS_2) . The presence of this pyrite in the soils is therefore indicative of the presence of sea water in the area, during which the pyrite was formed. It means that this location was once covered by sea water. This is consistent with the report of earlier studies that about 5000 BP the sea level was 3-5 m above the presence of pyrite a few km away from the present shoreline can be used as further evidence for the rise of sea level in Malaysia during the Holocence.

Paper A17

Fault patterns in Peninsular Malaysia: Origin and development

ZUHAINI MOHAMED* & H.D. TJIA

Orogenic Group of Companies *Email Address: zuhaini.mohamed@orogenicgroup.com

Major lineaments shown on satellite images (Figures 1 and 2) of Peninsular Malaysia occur in distinct patterns (Figure 3) that reflect their association with associated, dominant lithologies. In some cases the lineament patterns also indicate sequential development. Radiometric ages of major fault zones indicate that actual tectonic activity in PM ceased by 43-45 Ma, or intra-Eocene. Younger crustal movements have probably continued periodically since then, but only evidence from Quaternary and Recent events of reactivation of existing faults are documented with certainty. As examples are (a) the fault pattern in the Quaternary Kuantan basalt that mimics that in the Carboniferous rocks of the Sungai Lembing area, and (2) the 2008-2009 tremors that are closely associated with the major Bukit Tinggi fault zone in the central Western Belt of the Peninsula. It is very likely that the latter swarm of mild earthquakes had been induced by tectonic events at the plate boundary that surfaces as the Sunda Trench off Sumatera. Repeated GPS readings appear to confirm the interpretation.

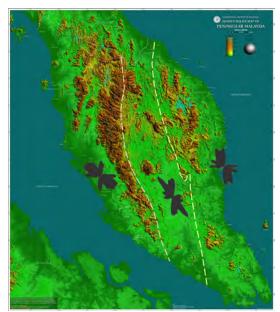


Figure 1: Three-fold division of Peninsular Malaysia: Western Belt. Central Belt and Eastern Belt.

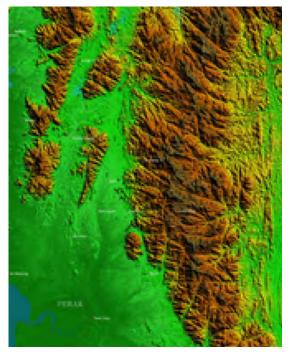


Figure 2: SRTM of part of Peninsular Malaysia displays lineaments.

Figure 3: Lineament patterns derived from SRTM. Western Belt (total length = 753.1 km), Central belt (total length = 290.8 km) and Eastern Belt (total length = 515.8 km). Most linemaments are NW-SE in the Western Belt; some showing N-S and E-W orientations. In the Central Belt the dominant ones also show NW-SE; while in the Eastern Belt are mostly N-S.

Paper A18

Active regional fault zones in Sabah, Malaysia

FELIX TONGKUL* & SHARIFF A.K OMANG

Natural Disaster Research Unit, Universiti Malaysia Sabah 'Email Address: ftongkul@ums.edu.my

Recent regional studies using SRTM images supported by preliminary field studies show the presence of two major trends of active fault zones in Sabah (Figure 1). In southeast Sabah several N30E and N70E trending regional active faults occur which have been grouped together as the Tawau-Kunak-Lahad Datu-Temanggong Fault Zone (TKLTFZ). In northeast Sabah similar N30E

and N70E trending regional active faults also occur. They have been grouped together as the Ranau-Pitas-Banggi Fault Zone (RPBFZ) and Pensiangan-Telupid-Paitan Fault Zone (PTPFZ). The active faults are interpreted based on the occurrence of linear structures, earthquake epicenters, mud volcanoes and landslide-prone areas. Some of the straight coastlines of Sabah may also be associated with the NW-SE and ENE-WSW trending faults. Field evidence shows both horizontal and vertical movements in these faults. These active faults are thought be related to the on-going NW-SE tectonic compression in Sabah and surrounding areas due to the northward movement of the Australian Plate against Sulawesi-Eastern Sabah.

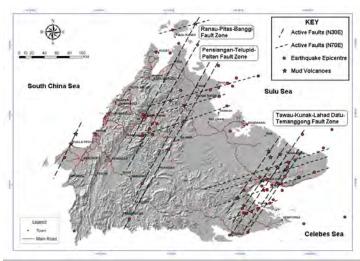


Figure 1: Location of active regional fault zones in Sabah.

Distribution of several thrust faults in Kedah: Implications to the geology of Kedah

Zaiton Harun* & Basir Jasin

Program Geologi, Pusat pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Email Address: zaiton@pkrisc.cc.ukm.my

New information on geology of Kedah particularly thrust faults, for the last ten years have been revealed from new exposures due to active earth quarries at many locations in the state. In Kuala Ketil, the chert unit of the Semanggol Formation is thrusted mainly towards north along the ENE to ESE thrust faults. The Bukit Kukus thrust consists of weathered mylonite enclosing blocks of bedded cherts, bedded mudstone, bedded sandstone and mudstone, bedded tuffaceous sandstone and mudstone. The thrust has brought up the Middle Triassic chert sequence on top of the late Late Permian chert. In Pokok Sena area several thrust faults were discovered. At Bukit Jabi about more than one kilometer of green to red slate of the Mahang Formation occupies the NNW strike ridge. The slate strikes NNW to N and dips towards east at western margin of the ridge. About a half kilometer across the ridge the slate dips towards the west. The slate overlies an unmetamorphosed sequence of thick sandstone and mudstone of the upper part of the Kubang Pasu Formation. The thrust fault is a boundary between the two formations is called as Jabi Thrust. Other exposures were also observed at top of the hill in Cheong Chong Kaw Estate, Bukit Meng and Bukit Tunjang. There are cases which the Kubang Pasu Formation lying on top of the slate of the Mahang Formation and separated by fault for example exposure at Bukit Tinggi, Bukit Pelobang, Bukit Gelong. The mylonite width ranges from half a meter e.g. Bukit Tinggi to tenth of meters e.g. Bukit Pelobang. The mylonites strike northwards and dip eastwards. An exposure of 40m height of thrust fault at Kampong Malau, Jitra comprises black mylonite enclosing lensoids and blocks of sandstones, and intercalation of sandstone and mudstone of the Kubang Pasu Formation. The mylonite strikes NNE and dips eastwards. Westwards tectonic transport is deduced from the slickensides on the lensoids surfaces. The present findings reveal that the Mahang Formation is not confined within the south Kedah. The slate occurs at several small hills and low ridges in Pokok Sena area and north Kedah. The Mahang Formation is sandwiched between thrust faults that cutting the Kubang Pasu Formation. This may be the reason the Mahang Formation is in normal position with the Kubang Pasu on the top, but the fault is in between them. The occurrence of northwards thrusts seem to be in consistent with the exception of the Bukit Kukus thrust which striking mainly ENE to ESE.

Paper A20

Structural map and multiple deformation episodes of Tanjung Kempit, Endau, Johor

Mustaffa Kamal Shuib

Geology Department, University of Malaya, 50603, Kuala Lumpur Email Address: mustaffk@um.edu.my

Detailed field mapping and structural analysis of Tanjung Kempit, some 5 km east of Endau, east coast of Johore, revealed at least five episodes of deformation affecting the probable Upper Paleozoic Mersing Bed metasediments. The first episode D₀ was a syn-sedimentary deformation event giving rise to mesoscopic extensional growth faults that has never been reported before in the Eastern Belt. The earliest tectonic deformation episode D, seems to be the result of an E-W compression, is represented by N to ENE oriented reclined tight to isoclinal folds associated with nearly bedding-parallel cleavages S1, and boudin. The main deformation episode D₂ is represented by N to ENE oriented mesoscopic folds, which are upright, tight to open, and associated with a non-axial planar cleavage S_o especially well developed along localized strike-parallel dextral shear zones. Small-scale folds are periclinal and arranged in en-echelon arrangement. These kinematic indicators show that D₂ were the result of dextral transpressive deformation. The structures developed during the fourth deformation episode D, include the kink-like curvilinear axial traces of F1/ F2 folds, NNW striking thick quartz veins and the disposition of the general layering into NW-SE-trending sub vertical kink bands, and S-shaped asymmetric folds. They developed almost exclusively on those parts of the structure where D, folding produced steep bedding and planar fabric suggesting sub vertical direction of principal compression likely due to strike-slip movement. The latest episode of deformation D₄ includes NNW-SSE trending sinistral strike-slip faults with subordinate NNE-SSW striking dextral strike-slip faults. D, represented brittle structures developed due to by E-W oriented compression. These may imply that the strata may have undergone an initial syn-sedimentary extension prior to a regional E-W compression followed by a transpressive deformation leading to N-S dextral and then later sinistral shearing followed by later brittle strike-slip deformations. The results of this study suggest a multi-episode of deformation involving syn-sedimentary extension, followed by contraction and transpressive history that is more complex than previously proposed for this part of the Eastern Belt.

Kajian geologi struktur kawasan Bukit Tinggi, Bentong, Pahang

Zainal Abidin Jamaluddin¹, Mazlan Mohamad Zain¹, Wan Saifulbahri Mohd¹, Mohd Badzran Mat Taib² & Tjia H. D.³

¹Jabatan Mineral dan Geosains Pahang ²Ibu Pejabat Jabatan Mineral dan Geosains Kuala Lumpur; ³13 Jalan P8 B/3, 62250 Putrajaya

Kawasan Bt. Tinggi terletak di bahagian barat daya negeri Pahang, berhampiran dengan sempadan negeri Selangor. Beberapa gempa bumi berskala kecil telah berlaku di kawasan ini bermula dari 30 November 2007. Berikutan kejadian gempa bumi ini, pihak Jabatan telah mengambil inisiatif menjalankan siasatan geologi bertujuan untuk menentukan struktur geologi tempatan dan rantau, seterusnya mengaitkan kejadian gempa bumi dengan struktur major kawasan. Kawasan kajian disempadani oleh longitud 101° 46.6°T hingga 102° 02.7°T dan latitud 03° 15.2°U hingga 03° 31.5°U. Kawasan Bt. Tinggi didasari oleh batuan granit biotit, diorit, granodiorit, mikrogranodiorit porfiri dan batuan volkanik berkomposisi dari riolit hingga andesit. Sesar-sesar utama yang terdapat di kawasan ini iaitu Sesar Bt. Tinggi yang berada dalam arah baratlaut-tenggara dan Sesar Karak yang berada dalam arah utara-timurlaut, timurlaut, barat-baratlaut dan timur-timurlaut. Ditafsirkan sesar mendatar Bt. Tinggi yang berlaku dengan meluas wujud dalam fasa terawal diikuti penyesaran normal dan seterusnya sesar songsang. Sesar-sesar dalam arah barat laut hingga barat-baratlaut yang selari dengan sesar Bt. Tinggi banyak ditemui dilapangan kebanyakannya sebagai sesar mendatar ke kiri, jelas ditunjukkan oleh muka upam pada satah sesar. Sebahagian titik epicenter gempabumi terletak berhampiran atau pada sesar-sesar yang telah dikenalpasti. Titik-titik epicenter ini berada sejajar dengan arah baratlaut-tenggara Zon Sesar Bt. Tinggi dan arah utara Zon Sesar Karak. Kejadian gempa bumi yang telah berlaku ditafsirkan sebagai hasil pelepasan tenaga oleh gerakan pada sesar-sesar utama di kawasan ini iaitu Sesar Bt. Tinggi dan Sesar Karak.

Bt. Tinggi area is located at the southwest Pahang near to the boundary of Pahang-Selangor state. Beginning 30th November 2007, a number of minor earthquakes have rocked this area. In respond to the events, the Department has initiated geological investigation with the aims to determine the regional and local structures; and to correlate between the earthquakes and the major structures of the area. Study area is bounded by longitud 101° 46.6° E to 102° 02.7° E and latitude 03° 15.2° N to 03° 31.5° N. The Bt. Tinggi area underlain by biotite granite, diorite, granodiorite, porphyritic microgranodiorite and volcanic rocks of andesitic to rhyolite composition. Major faults trends in this area include northwest-southeast Bt. Tinggi Fault and northerly Karak Fault, northnortheast, northeast, west-northwest and east-northeast. Widely distributed of Bt. Tinggi strike slip fault interpreted occurred in the earliest phase followed by normal faulting and then reverse faults took. Northwest to west-northwest faults trending associated with Bt. Tinggi Fault abundantly observed in the field as left strike slip fault, clearly showing by slickensides on the fault plane. Several of the epicenters are located near or at known faults. The epicenters also suggest alignment with the NW-SE Bt. Tinggi Fault zone and also the northerly Karak Fault zone. Earthquakes in Bt. Tinggi area occurred interpreted as a result of released strain through movement on major faults in this area comprising Bt. Tinggi Fault and Karak Fault.

Paper A22

Double impact rings Luat and Bertam, Cenderoh area, Perak

Ros Fatihah Muhammad¹* & H.D. Тла²

¹Department of Geology, Universiti of Malaya, 50603 Kuala Lumpur ²Orogenic Resources Sdn Bhd, Shah Alam, Selangor *Email Address: rosfmuhammad@um.edu.my

In the course of detailed mapping of the Quaternary felsic volcanic ash in the Cenderoh - Kota Tampan area of Perak, our study team found evidence of double impact rings: Luat and Bertam circular features. The diameters are between 3.5 and 4 kilometres and the two rings are partially superimposed. The larger Bertam Ring consists of four concentric topographic expressions. Several years earlier, shocked quartz and other PDFs (planar deformation features) comprising clasts in a breccia at Bukit Bunuh were identified as impact breccia or suevite (Tjia & Mazlan 2003). However, no obvious impact topography was found associated with Bukit Bunuh. Since that paper, follow-up fieldwork has resulted in discovering more localities bearing evidence of extraterrestrial impact features in the general area of Kota Tampan - Cenderoh reservoir. A major discovery consists of fragments of very dense iron-rich rock. These fragments were found scattered over a relatively small area near Kampung Beng and occupy the outer ring of the Bertam ring. The larger fragments measure about 15 cm. All fragments are subangular and most show distinct irregular but relatively planar fracture surfaces. One of the fragments has a broadly pitted surface suggestive of "ablation", similar to those on proven meteorites and interpreted to have formed by partial melting. Early investigation by XRD shows the main composition of these rocks are hematite and magnetite and the presence of kamacite in melt breccia found in the same area is also detected.

Geologi struktur pada Formasi Gua Musang di negeri Kelantan

Јатміка Setiawan $^{1,2}*$ & Івканім Авриллан 1

¹Geology Programme, School of Environmental and Natural Resources Sciences
Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 Bangi, Selangor, Malaysia

²Programme of Geology, Faculty of Mineral Technology, UPN "Veteran" Yogyakarta, Indonesia

*Email Address: jatmikosetiawan@yahoo.com

Negeri Kelantan adalah salah satu negeri bahagian paling utara daripada Semenanjung Malaysia. Negeri ini bahagian utara bersempadan dengan Thailand, bahagian timur bersempadan dengan Negeri Terengganu dan bahagian selatan bersempadan dengan Negeri Pahang, manakala bahagian barat bersempadan dengan Negeri Perak dan Negeri Kedah. Kertaskerja dimaksudkan untuk menghuraikan secara terperinci pelbagai struktur yang melibatkan berbagai jenis batuan dalam Formasi Gua Musang di seluruh Negeri Kelantan. Secara geologi Negeri Kelantan tersusun daripada litologi Olistortrom Kelantan Barat, Syis Taku dan Formasi Gua Musang. Manakala batuan rejahan berupa granit, diorit porfir, andesit, ignimbrit dan dolerit. Negeri Kelantan secara struktur di bahagian barat disempadani oleh olistostrom Kelantan Barat yang di beberapa lokaliti direjah oleh jasad serpentinit dan bahagian timur disempadani oleh Sesar Lebir. Metodologi yang digunakan dalam penelitian ini ialah ritisan terperinci di sepanjang laluan jalan dan sungai. Manakala analisis yang digunakan iaitu dengan Program Dips dan secara manual. Formasi Gua Musang, merupakan formasi yang paling luas menempati Negeri Kelantan. Lipatan utama yang dijumpai di bahagian tengah dengan paksi lipatan berarah utara selatan hingga utara baratlaut-selatan tenggara. Manakala di bahagian utara paksi terpesong oleh rejahan granit dan diorit porfir membentuk arah paksi timurlaut-baratdaya. Sesar yang melibatkan Formasi Gua Musang berupa sesar dektral berjurus U30-45°T miring ke arah tenggara 60-70°. Sesar sinistral berjurus U330-340°T miring ke arah timurlaut dan baratdaya 60-70°. Sesar songsang berjurus U350°T miring ke arah timut-timur laut dan barat-baratdaya 60-80°T. Di kawasan yang bersempadan dengan rejahan granit dan sesar besar, Formasi Gua Musang menjadi sangat keras dan terlipat-lipat rapat. Rejahan diorit porfir di Kampung Pasir Maya berarah timurlaut-baratdaya telahpun memesongkan arah paksi lipatan utama pada Formasi Gua Musang menjadi selari dengan rejahan. Tegasan utama yang melipatkan dan mensesarkan Formasi Gua Musang berarah antara barat-baratlaut – timur-tenggara hingga timur-timurlaut – barat-baratdaya.

Structural geology of Gua Musang Formation in Kelantan

Kelatan is a northern state of Peninsular Malaysia. The boundary of this state to the north is Thailand, easthern part is Terengganu, southern part is Pahang and westhern part with Perak and Kedah. This paper explains structural variation of all litologi of Gua Musang Formation in Negeri Kelantan. Geologicaly Negeri Kelantan are comprises of west Kelantan Olistostrom, Taku Schist and Gua Musang Formation. Igneus rock in Negeri Kelantan are granite, diorite porphire, andesite, ignimbrite dan dolerite. Structuraly Negeri Kelantan are boundared by olistostrom in the west and Lebir Fault Zone in the east. The method of this study is detailed measurement along the road and river. The analysis by the Dips programme and combination with manual method. Gua Musang Formation is mainly separate in Negeri Kelantan. Main fold of Gua Musang Formation in the middle part towards north-south up to north-northwest – south-southeast. In the northern part of this main fold terned by granite intrusion and diorite pophire towards NE-SW. The main of fault in the Gua Musang Formation are dekstral fault with strike N30-45°E and diping 60-70° to SE and of sinistral fault with strke N330-340°E and diping 60-80° to ENE-WSW. In the area boundared by igneus granit intrusion and near than main fault, Gua Musang Formation formed the compact and strongly folding. Itrusion of diorite pophire towards NE-SW have to terned the main fold of Gua Musang Formatin to follow this intrusion. The main compression who formed the folding and faulting of the Gua Musang Formation towards between WNW-ESE up to ENE-WSW.

The two seasonal characteristics of Pahang River, Pahang, Malaysia

Muhd. Barzani Gasim^{1*}, Mohd. Ekhwan Toriman², Hii H.T. & Pan I.L.¹

¹ Geology Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology,
² School of Social, Development & Environmental Studies, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Email Address: dr.zani@ukm.my

Pahang River is the longest river in Peninsular Malaysia. Pahang River starts from the confluence of Tembeling River and Jelai River at Kuala Tembeling with length more than 300 km to estuary of Pahang River at Pekan. Rapid development and conversion of forested land into other land uses within the Pahang Basin has an impact to the river ecosystem due to lack of proper and effective management and have led to deterioration and shortage of water quality and water resource. Higher of Soil loss also related to urbanization and agricultural activities were recognized as the cause of water pollution. Two hydrological and water quality samplings have been carried out during the study; first sampling was conducted from 1st to 3rd January 2010 and the second sampling from 22nd to 25th February 2010. At least 15 stations along Pahang River have been chosen to determine hydrology (rainfall, velocity and stream flow) and water quality (WQI parameters) of the river. During first sampling, measurement of the velocity ranged from 0.31 to 0.58 m/s and river flow was ranged from 153.28 to 439.68 m³/s. For water quality analysis; pH range from 7.2 to 7.6; dissolved oxygen range from 5.24 to 7.28 mg/L, chemical oxygen demand from 20.0 to 69.0 mg/L, biochemical oxygen demand from 0.40 to 0.97 mg/L; total suspended solids from 50.0 to 65.6 mg/L and ammonia nitrogen from 0.19 to 1.16 mg/L. For the second measurement, almost all of parameters were dropped; velocity ranged from 0.22 to 0.48 m/s the river flow from 52.07 to 304.49 m³/s. For water quality analysis; pH range from 7.2 to 7.5; dissolved oxygen range from 7.51 to 8.65 mg/L, chemical oxygen demand from 5.0 to 17.0 mg/L, biochemical oxygen demand from 0.26 to 1.49 mg/L; total suspended solids from 18.5 to 34.5 mg/L and ammonia nitrogen from 0.03 to 0.21 mg/L. Due to no proper rainfall between sampling period, It can be shown that during the second sampling water level of Pahang River was dropped, this phenomenon is reflected by decrease of velocity, stream flow and water quality level for the most water quality parameters unless for dissolved oxygen.

Paper B1

Geology and geochemistry of Bukit Nimong and Selanjan intrusives of West Sarawak, Malaysia - Implications for gold and porphyry copper mineralization

RICHARD MANI BANDA 1*, ALEX UNYA 1, LIU HUA 2 AND CHEN SHICK PEI 2.

Minerals and Geoscience Department Malaysia Longview Mineral Consultants Ltd. *Email Address: dr.richardm@jmg.gov.my

Bukit Nimong and Bukit Selanjan areas located in the south central part of West Sarawak are underlain by the dioritic intrusives surrounded by metasandstone of the Silantek Formation. The intrusives are the result of the multi-phase magma intrusions into the Silantek Formation during Miocene, developed simultaneously with other nearby intrusives at Bukit Klambi and Bukit Tiong Laju. These areas were the target for mineral exploration as far back as in the 1700's when the Dutch geologists crossed over to Sarawak from Kalimantan, Indonesia, the former Dutch colony. However, more detailed and systematic geochemical survey was only carried out during 1980s by the Geological Survey Malaysia, mainly collecting stream sediments and panned concentrates at the confluence of 4th or the 3rd order stream (Tan, 1979, Alex Unya *et al.*, in press). The results from the analysis of the stream sediments showed some high anomalous values for gold, copper and other metallic minerals.

In more recent years, detailed geological mapping, geochemical and geophysical surveys were carried out in the vicinity of these two hills. Geological mapping results showed that the intrusives in the two areas are multi-phase intermediate to acid intrusive stocks which had thermally metamorphosed the surrounding country rocks belonging to the Silantek Formation. Rock geochemistry study shows that the intrusives in the two areas can be classified as calc-alkaline series in which the weight percentage of $CaO = K_2O + Na_2O_2$, and the weight percent of silica are between 56-61% (oversaturated).

The two intrusive stocks are associated with extensive hydrothermal alteration and are believed to have potential for gold and copper mineralization. In Bukit Selanjan area, there are potentials for the existence of gold mineralization zones controlled by two large breccia pipes in the intrusive rocks. The three major breccia zones outcropped in the central part of the southern intrusive body; the largest of one is about 2100 m^2 ($70 \text{ m} \times 30 \text{ m}$), and the other two breccia outcrops are 600m^2 ($30 \text{ m} \times 20 \text{ m}$) and 480 m^2 ($24 \text{ m} \times 20 \text{ m}$) respectively. Two types of breccia pipes that may be associated with gold mineralization can be recognized; high fluidized breccia and low fluidized breccia. The alteration is mainly sillicification, sericitization, chloritization and advanced argillization that may relate to possible gold mineralization.

Extensive stock-works and with sporadic disseminated copper mineralization associated with gold are confined within the intrusive outcrops in the Bukit Nimong area. Evidence of major alterations in Bukit Nimong area includes silicification, potassium metasomatic alteration, sericitization, boititzation and K feldspar development. These are indications of a possible porphyry copper system in the Bukit Nimong area.

Geochemistry results of soil samples from both the Selanjan and Bukit Nimong areas showed anomalous values for copper and gold. Geophysical Induced Polarization survey is planned to be carried out in the two areas with latest technology and high capacity equipment (10kw power supply VIP 10000 IP System) which can penetrate down to five hundred meters. The IP results will guide further exploration works including drilling in the two areas.

Paper B2

Structural control on quartz veins in the Penjom Gold Mine, in particular at Kalampong Pit

Zakaria Endut* & Teh Guan Hoe

Department of Geology, University of Malaya, 50603 Kuala Lumpur *Email Address: zakpenjom@yahoo.com

Penjom Gold Mine lies 50 km east of a major terrain boundary, the Raub-Bentong Suture within the central belt of the Malay Peninsular. Regional structure as seen on SRTM DEM shows that Penjom is situated along the NNE trending splay from the main Raub-Bentong Suture as indicated by strike ridge lineaments. The host rock is composed of Late Permian turbiditic sequence (Shafeea Leman *et al.*, 2005) comprising of calcareous shale, carbonaceous shale, tufffaceous sandstone and conglomerate. These sequences are intruded by felsite intrusives of tonalitic composition. This intrusive rock is a very important lithological unit that provides chemical and physical contrasts under its structural control.

Veins are important components of most of epigenetic hydrothermal ore system. Understanding their formation and the different styles of quartz veining is the key to unravelling the structural controls on the ore system (Davis, 2005). It is very important to study episodes of veins formation to distinguish features due to the vein formation and superimposed features by later deformation.

Gold mineralisation in the Penjom Gold Mine is dominantly hosted in structurally controlled quartz-carbonate veins that display variable degrees of an overprinting event under ductile-brittle environment. Quartz vein is categorised into two main types, namely as shear veins and extensional quartz veins (Davis, 2005). Shear veins comprise of ribbon to laminated veins developed only in carbonaceous units either as massive or very thin units, parallel to bedding or shearing. These veins are interpreted as occurring during folding and thrusting events involving repeated opening of the bedding and shearing. They are generally hosts to high grade mineralization (Corbett, 1999) although at certain places are not well mineralised. Along the main thrust, these shear veins have been further reactivated as shown by their textural modification during later stage event. Associated with shear veins are several types of extensional veins including sub-vertical extension vein array, breccias and stockwork.

Faults parallel to the Penjom thrust that show both reverse and dextral displacements overprinted the earlier event but only generated extensional veins of the same morphology, mostly at intersections of sediment-intrusive contact or low angle extension veins in narrow intrusive bodies. This structure may also reactivate earlier shear vein structures. Local NNW fault controlled some mineralization at the west wall of Jalis Corridor in the form of massive to sheeted extensional veins. A series of North-South trending sinistral, oblique to normal faults intercept the Penjom Thrust and a folded sequence at low angles are not associated with the above style of veins but locally hosted quartz-calcite veins.

References

Brett Davis, 2005. Post-workshop report pertaining to the Penjom and North Lanut mining operation. Avocet Mining Plc structural geological workshop, unpublished report.

Gorbett G.J., 1999. Comments on the controls to gold mineralization at the Penjom Gold Mine, Malaysia: Report to Specific Resources Sdn. Bhd., unpublished report.

Shafeea Leman, Norhaslinda Ramli, Sharaffudin Mohamed & Charles Molujin, 2005. The discovery of Late Permian (early Changshingian) brachiopods from Penjom, Pahang Darul Makmur: Bulletin Geological Society of Malaysia, 48, 91-94

Paper B3

Characterisation of gold mineralisation, Sungai Charah - Cini Timur area, Pahang

Teh Guan Hoe*, Nurul Fatehah and Hazel Hamilson

Geology Department, University of Malaya Email Address: tehgh@um.edu.my

The Sg Charah-Cini Timur area is bounded by longitude 103 02'E to 103 05'E and latitude 3 15'N to 3 18'N, SE of Tasik Chini and about 90km from Kuantan. The area is dominated by Carbo-Permian metasediments of the Mersing Beds which consists of slate, phyllite and quartzite.

Gold is encountered in quartz veins as primary eluvial or colluvial gold on hillslopes or as alluvial gold in adjacent streams and rivers. Jets of water are directed at and around loose material along quartz veins along hillslopes and foothills and gold is recovered by panning or simple mobile palongs. Ore material from certain hillslopes were ground on site in mini grinders and then recovered in mini palongs. Gold was panned from 2 hillslopes in the Cini Timur area whereas in the Sungai Charah area gold was panned from 2 hillslopes and an alluvial mine.

Binocular study show that physically the gold grains in the Cini Timur area are angular to rounded in roundness and prismoidal to discoidal in sphericity with average lengths of 1.17 - 3.64 mm and widths of 1.39 - 2.02 mm. The gold grains recovered in the Sungai Charah area are subrounded to angular in roundness and have subprismodal to subdiscoidal sphericity with average lengths of 0.3-3.0mm and widths of 0.5 - 4.0 mm.

EPMA analyses show that geochemically the gold grains from Cini Timur area have 4 main sets of fineness values of 601.5 - 663.9, 720.1 -744.9, 754.0 - 799.6 and 808.6 - 843.1. The gold grains from Sungai Charah area, however, have 2 main sets of fineness values of 852.2 -883.1 and 900.7 - 932.0.

Paper B4

Local silica sand deposits and their utilisation in producing cordierite glass-ceramics

NURDDIN, S. M. A. S. M., 1 & HASHIM, M.²

¹Pusat Penyelidikan Mineral ²Nanotechnology Laboratory, Institute Advanced Materials, Universiti Putra Malaysia

Three silica sand deposits (Bintulu, Terengganu and Perak ex-mining land) were used as a raw material in producing cordierite glass-ceramics (MgO-Al₂O₃-SiO₂-TiO₂). The crystallization sequences of MgO-Al₂O₃-SiO₂-TiO₂ system glass were studied by means of differential thermal analysis (DTA), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The base glass had a composition of 45.00% SiO₂, 24.00% Al₂O₃, 15.00% MgO and 8.50% TiO₂ as the nucleating agent. The procedure for the preparation of the cordierite glass-ceramic material included glass melting, forming, annealing and heat treatment. From the DTA results, the crystallization temperature was found to start around 800°C~ 900°C. The XRD analysis of the glass-ceramics indicated that the cordierite phase became more dominant for the Bintulu silica sand compared to the Terengganu and Perak ex-mining land deposits. The coefficient of thermal expansion (CTE) results showed that the Bintulu glass-ceramics had lower thermal expansion compared to the glass-ceramics using Terengganu and Perak ex-mining land deposits. The Vickers micro-hardness result of the Bintulu, Terengganu and ex-mining revealed that increasing the heat-treatment temperature results in a slightly increase of the hardness values. Based on the XRD results, the Bintulu and Terengganu silica sand deposits can be used as SiO₂ source for producing cordierite glass-ceramics without any further chemical upgrading. Here it also clear that the ex-mining silica sand deposit does not have the purity level required to have the same performance as Bintulu and Terengganu deposits without further improvement

Tiga deposit pasir silika (Bintulu, Terengganu dan bekas lombong Perak) telah digunakan sebagai bahan mentah untuk penghasilan kaca-seramik kordierit (MgO-Al₂O₃-SiO₂-TiO₂). Aturan penghabluran sistem kaca (MgO-Al₂O₃-SiO₂-TiO₂) telah dikaji dengan menggunakan alat analisis pembezaan terma (DTA), pembelauan X-ray dan FESEM. Kaca asas mempunyai komposisi 45.00% SiO₂, 24.00% Al₂O₃, 15.00% MgO dan 8.50% TiO₂ sebagai agen penukleusan. Prosedur penyediaan bahan kaca-seramik kordierit termasuk peleburan, pembentukan, penyepuhlindapan dan rawatan haba kaca. Daripada keputusan DTA, suhu penghabluran diadapati bermula sekitar 800°C~ 900°C. Analisis XRD kaca-seramik mendapati fasa kordierit menjadi lebih dominan bagi pasir silika Bintulu berbanding dengan deposit Terengganu dan bekas lombong Perak. Keputusan ujian pekali pengembangan haba (CTE) menunjukkan kaca-seramik Bintulu mempunyai pengembangan haba yang rendah berbanding dengan kaca-seramik Terengganu dan bekas lombong Perak. Keputusan ujian micro-kekerasan Vickers Bintulu, Terengganu dan bekas lombong Perak mendedahkan bahawa peningkatan suhu rawatan haba akan sedikit meningkatkan nilai kekerasan. Berdasarkan kepada keputusan –keputusan XRD yang telah didapati, deposit pasir silika Bintulu dan Terengganu mempunyai potensi untuk digunakan sebagai sumber SiO₂ bagi penghasilan kaca-seramik kordierit tanpa melalui proses tambah nilai secara kimia. Kajian ini juga membuktikan bahawa deposit pasir silika bekas lombong tidak mempunyai tahap ketulenan yang diperlukan seperti untuk memiliki prestasi yang serupa deposit Binyulu dan Terengganu tanpa tambah nilai lanjut.

Paper B5

Critical mineral characteristics and their applications to the paint industry in the Asia region

CHEANG K.K.

School of Material & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia Email Address: kkcheang@eng.usm.my

In general, industrial mineral deposits are often defined by the mineralogy, quantity and quality of what we perceive as suitable for the industry, without sufficient understanding of the final applications. But very often, it is the detailed requirements (specifications) of the end-user, other than the processing capabilities, the price and the logistics, which define whether a deposit is economically viable, and whether it can be used for certain applications or not, such as for the paint industry.

The paint industry is important because it is one of the industries where a large abundance of minerals are used, and where the specifications are normally quite stringent. This industry contributes a value of over US\$ 450 million (from 150 million litres) to the Malaysian economy. It is therefore extremely important to focus on the particular requirements of this industry, so that we have a better guide to search for mineral deposits that can fulfill the requirements of this industry.

In the infancy of the paint industry, minerals are commonly used as cheap fillers to reduce the cost of a can of paint. However, in recent times, modern paint formulators can modify both the engineering and aesthetics of these paints or coatings, of which the mineral fillers (now referred to as extenders) are a part.

The extenders are now used as engineering tools, and they play diverse roles in the application and function of the modern coatings.

Some of the more important extenders or mineral groups used by the paint industry in Malaysia, and many countries in Asia, are calcium carbonate, barium sulfate, silica, and the silicates which include tale, clay, feldspar and mica.

However, many more mineral products need to be studied and researched, as the industry is getting better aware of their role in improving the paint properties, as well as in reducing costs by replacing the existing, highly expensive (but similar mineral materials), that are being imported from the US and the EU.

The critical mineral parameters that have to be considered, when formulating different types of paints for certain functions, are as shown below.

- a) Physical & chemical characteristics of individual mineral or composites
- b) Size of mineral grains achievable, based on grinding capabilities
- c) Degree of weathering of the mineral product
- d) Presence or absence of impurities in the mineral product; what types, quantity, in what form eg locked or free, and are the processes capable of separating the impurities from the mineral products.
- e) Are the mineral products in compliance with environmental & safety regulations eg. are the mining operations sustainable, & is the source rehabilitated after mining.
 - f) Consistency of the products delivered from supplier (for every batch)

Some examples of the mineral properties that are critical to the paint industry are discussed.

From consideration of the above requirements, it may be necessary to further delineate various sub-zones within a mineral deposit for different applications to the paint industry.

Lime industry in Malaysia

Mat Niza bin Abdul Rahman & Mohd Suhaili bin Ismail

Jabatan Mineral dan Geosains Malaysia, Kuala Lumpur

The lime industry is one of the established mineral-based downstream industries in Malaysia. The term lime is used for an inorganic compound, white in colour with chemical formula CaO or known as calcium oxide. Lime is not a mineral; it is manufactured from limestone or other sources of calcium carbonate (CaCO₃) such as coral, chalk or oyster shells. There are two main types of lime produced in Malaysia, namely quicklime or unslaked lime or calcium oxide (CaO) and hydrated lime or slaked lime or calcium hydroxide (Ca(OH)₂). In addition, hydraulic lime and putty lime or plaster lime are also being produced to cater for the local market demand.

Lime is used in many important industrial processes including iron and steel manufacture, non-ferrous metal industry, building/construction, food industry, agriculture, soil stabilization, chemical industry and other environmental applications.

There were 19 lime producers throughout the country in 2008; 16 in Peninsular Malaysia and three in Sarawak. Most of the lime producers are using modern kiln to produce lime in bulk quantity, however there are still some producers using the traditional method in calcinations process.

During 2008, Malaysia produced about 21 million tonnes of lime valued at RM105.6 million. During the same period, 0.3 million tonnes of lime worth RM64 million were exported and 0.014 million tonnes valued at RM 7.8 million were imported.

Industri kapur di Malaysia

Industri kapur merupakan salah satu industri hiliran berasaskan mineral yang telah kukuh bertapak di Malaysia. Istilah kapur digunakan untuk sebatian bukan organik, berwarna putih dengan formula kimia CaO atau dikenali sebagai kalsium oksida. Kapur bukan sejenis mineral, ia dihasilkan daripada proses yang dilakukan terhadap batu kapur atau sumber kalsium karbonat (CaCO₃) yang lain seperti karang, kapur (chalk) atau cengkerang. Terdapat dua jenis utama kapur yang dikeluarkan di Malaysia, iaitu kapur tohor atau kalsium oksida (CaO) dan kapur tohot terhidrat atau kalsium hidroksida (Ca(OH)₂). Selain itu, kapur hidraulik dan kapur putty atau kapur plaster turut dikeluarkan bagi memenuhi permintaan pasaran tempatan.

Kapur digunakan dalam banyak proses industri yang penting termasuk pembuatan besi dan keluli, industri logam bukan berbesi, bangunan/pembinaan, industri makanan, pertanian, penstabilan tanah, industri kimia dan lain-lain kegunaan berkaitan dengan alam sekitar.

Terdapat 19 pengeluar kapur di seluruh negara pada tahun 2008; 16 di Semenanjung Malaysia dan tiga di Sarawak. Kebanyakan pengeluar kapur sudah menggunakan teknologi moden untuk pengeluaran kapur dalam kuantiti yang banyak. Walau bagaimanapun terdapat sebilangan pengusaha yang masih menggunakan kaedah tradisional dalam proses pengkalsinan.

Pada tahun 2008, pengeluaran kapur di Malaysia adalah sebanyak 21 juta tan yang bernilai RM105.6 juta. Pada masa yang sama, Malaysia mengeksport kapur sebanyak 0.3 juta tan kapur bernilai RM64 juta dan mengimport sebanyak 0.014 juta tan kapur bernilai RM7.8 juta.

Paper B7

Rare Earth Elements (REE) resources potential in weathered granitic rocks in Peninsula Malaysia

Kamar S. Ariffin^{1*}, Hayato Kurumi², Akira Imai²

¹School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia,14300 Nibong Tebal, Penang, Malaysia ² Dept. of Earth Resources Engineering, Kyushu University,744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan *Email Address: kamarsha@eng.usm.my

In this study, a potentiality for ion-adsorption REE deposits in Malaysia is examined. Since weathered granites are well developed because of a tropic climate with high temperature and high humidity in Malaysia, mineralization of ionadsorption is expected. Fresh and weathered granitic rocks were collected in Malaysia and these samples were analyzed in order to evaluate REE resources potential in Malaysia. Powdered samples were analyzed contents of major and the traces of elements by X-ray Fluorescence Spectrometry (XRF) and Inductively Coupled-Mass Spectrometry (ICP-MS). Though the volatile components such as moisture and carbonate cannot be analyzed by XRF, LOI (Loss on Ignition) allows to measure wt% of volatile components. An average ∑REE content of fresh granites is 267ppm and an average ∑REE content of weathered crusts is 217 ppm. In addition, averages of LREE/HREE and Th+U (ppm) are 13 and 64 ppm. It can be observed that the more REE concentration, the more radioactive elements concentration. At Lumut (Manjong), weathered crusts were developed well and high REE concentrations were observed. The ∑REE content of China ion-adsorption type deposits varies from 500 ppm to 2000 ppm while the highest ∑REE content of Lumut is 763 ppm (+Y 844 ppm).

Recovery of gold from gold scrap by hydrometallurgical process

SHARIZAN IBRAHIM

Bahagian Perkhidmatan Teknikal, Jabatan Mineral dan Geosains Malaysia

A process for the recovery of gold from gold scrap is described. It is based on heating the scrap material along with the mixture of hydrochloric acid, sulphuric acid and sodium nitrate. The gold scrap is completely dissolved only if the silver content in the scrap is below 15%. Recovery of gold is achieved by precipitation with ascorbic acid. The study showed that ascorbic acid is capable to recover gold up to 99.9%. A brief comparison of this dissolution system and aqua regia method is reviewed. The process can be scaled up and is suited to high carat gold.

Satu proses pengembalian semula logam emas daripada skrap emas dilakukan berdasarkan kepada pemanasan bahan skrap emas di dalam campuran asid hidroklorik, asid sulfurik dan sodium nitrat. Skrap emas hanya akan melarut dengan sempurnanya jika kandungan perak di dalam skrap tidak melebihi 15 peratus. Pengembalian semula logam emas dilakukan dengan pemendakan menggunakan asid askorbik. Kajian yang dijalankan menunjukkan bahawa asid askorbik berupaya mengembalikan logam emas sehingga mencapai ke tahap 99.9 peratus. Satu perbandingan ringkas di antara sistem pemelarutan ini dengan kaedah aqua regia telah diulas. Proses ini berupaya digunakan mengikut skala dan sesuai bagi emas yang mempunyai karat yang tinggi.

Paper B9

An investigation by variable pressure scanning electron microscopes (VPSEM) of primary gold from Selinsing Gold Mine, Pahang, Malaysia

Hamzah Mohamad*, Mohd Basril Iswadi Basori & Wan Fuad Wan Hassan

School of Environmental Science and Natural Resources,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 Bangi, Selangor Darul Ehsan
*Email Address: hbm@ukm.my

Characterization of primary gold in Selinsing Gold Mine, Pahang has been done using the variable pressure scanning electron microscopes (VPSEM). The VPSEM has been found to be a very useful technique in the characterization of gold samples. VPSEM study shows that the gold samples in the Selinsing Gold Mine, Pahang are associated with other minerals such as arsenopyrite, pyrite, rutile, scheelite, FeAsS ± Pb mineral, iron oxides and a range of trace minerals that include chalcopyrite, tetrahedrite and sphalerite. VPSEM analysis also shows that Au composition ranges from 89.20% to 89.30% with 10.70%-10.80% Ag in the gold samples. The presence of Ag being seen as non-uniform replacement of Au in the gold alloy.

Early Carboniferous (Tournaisian) Radiolarians from Peninsular Malaysia and their significance

Basir Jasin* & Zaiton Harun

Program Geologi, Pusat pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Email Address: basir@pkrisc.cc.ukm.my

Distribution of Early Carboniferous (Tournaisian) radiolarians was widespread. They were reported from Western Europe, southern North America, Australia, Turkey, south China and Southeast Asia. In Peninsular Malaysia, the Early Carboniferous radiolarians were reported from the Kubang Pasu Formation, Late Paleozoic chert sequence from north Perak, the chert block in Langkap and the Kenny Hill Formation. The Kubang Pasu chert is exposed at several earth quarries at Ulu Pauh and Guar Sanai, Perlis, Bukit Inas, Ladang Cheong Chong Kaw, Kampung Belukar, Bukit Panchor, Bukit Kamelong, Bukit Telaga Jatuh, Guar Kepayang, and Bukit Meng, Kedah. Early Carboniferous radiolarian chert was also reported from Late Paleozoic rock sequence exposed at north Perak near the Thai border. High diversity radiolarians were reported from the chert block exposed at Langkap Negeri Sembilan. The radiolarians from the Kubang Pasu were recorded from Ulu Pauh, Bukit Kamelong, Telaga Jatuh, Bukit Binjal and Guar Kepayang. Samples from Bukit Binjal yielded nine species of radiolarians viz. Stigmosphaerostylus variospina (Won), Entactinia unispina Won, Entactinia inaquoporosa Won, Callela hexatinia Won, Callela ef parvispinosa, Trianosphaera hebes Won, Cubaxonium? Octaedrospongiosum Won, Duplexia foremanae Won and Duplexia parviperporata Won. Other localities yielded only two species mainly Stigmosphaerostylus variospina (Won) and Callella sp. Radiolarite from the Paleozoic rock sequence north Perak yielded twenty radiolarian taxa namely Albaillella cf. perforata s.l. Won, Archocyrtium lagabriellei Gourmelon, Archocyrtium pulchrum Braun, Archocyrtium venustum Cheng, Astroentactinia biaciculata Nazarov, Astroentactinia digitosa Braun, Astroentactinia mirousi Gourmelon, Astroentactinia multispinosa Won, Astroentactinia stellaesimilis Won, Belowea hexaculeata Won, Belowea variabilis Ormiston & Lane, Ceratoikiscum berggreni Gourmelon, Palaeoscenidium cladophorum Deflandre, Pylentonema antiqua Deflandre, Stigmosphaerostylus brilonensis (Won), Stigmosphaerostylus tortispina (Ormiston & Lane), Stigmosphaerostylus variospina (Won), Stigmosphaerostylus vulgaris (Won), Trilonche altasulcata (Won), and Triaenosphaera sp. Thirty radiolarian taxa were identified from the chert block in Langkap i.e. Albaillella cornuta Deflandre, Albaillella deflandrei Gourmelon, Albaillella paradoxa Deflandre, Albaillella undulata Deflandre, Archocyrtium clinoceros Deflandre, Archocyrtium ludicrum Deflandre, Archocyrtium lagabriellei Gourmelon, Archocyrtium pulchrum Braun, Archocyrtium strictum Deflandre, Archocyrtium ef. ferrum Braun, Archocyrtium sp. A, Archocyrtium sp. B, Astroentactinia multispinosa Won, Astroentactinia biaciculata Nazarov, Belowea sp. Callella cf. conispinosa Won, Callella sp., Callella parvispinosa Won, Ceratoikiscum avimexpectans Deflandre, Ceratoikiscum berggreni Gourmelon, Ceratoiciskum umbraculum Won, Ceratoiciskum sp., Cerarchocyrtium singulum Cheng, Cystisphaeractinium mendax Deflandre, Cystisphaeractinium sp. A, Cystisphaeractinium sp. B, Entactinia digitosa Braun, Entactinia vulgaris Won, Entactinosphaera palimbola Foreman, Huasha sp, Polyentactinia polygonia Foreman, Pylentonema sp., Robotium sp., and Triaenosphaera sicarius Deflandre. The radiolarians from these localities exhibit different specific diversity which was related to the different type of environments. The relatively shallow water environment is characterized by low diversity and is dominated by Stigmosphaerostylus variospina (Won) and Calella sp. The deeper water is characterized by high specific diversity and dominated by Albaillella association. Early Carboniferous was considered as a part of an ice-house period. During the Tournaisian there was a hypersiliceous event where the radiolarian productivity was very high. The high radiolarian productivity during this time suggests that the water mass was very rich in nutrient and siliceous material. This event was probably related to the upwelling currents which brought nutrient-rich bottom water to the surface. The widespread radiolarian bearing chert can be used as a marker bed for stratigraphic correlation in Peninsular Malaysia.

A short note on the discovery of Early Devonian tentaculite-bearing unit from Taunggyi-Taungchun range, Shan State (south), Myanmar

AYE KO AUNG

Department of Geology, University of Malaya, 50603, Kuala Lumpur, Malaysia Email Address: akageol@um.edu.my

The Devonian limestone unit, which contains tentaculites, is reported for the first time from the Taunggyi town area, in Shan State (south). They occur in the narrow outcrop between the Linwe Formation of Silurian age and the Plateau Limestone Group of Permian to Triassic. The unit is stratigraphically measured 10.7m at the Taungchun section. The unit's lower part is dominated by thick-bedded limemudstone with occasional thin beds of fine sandstone. The tentaculites occur in purple, calcareous siltstone of the base of the section. In the upper part of the unit, features thicker and medium bedding and is composed chiefly of light to dark grey limemudstone.

The Taungchun tentaculites are small, 1.5-9mm in length, thin-shelled forms. There are two basic types, ringed and unringed of similar proportion. The Taungchun tentaculites are closely compared with those from the Mahang Formation of Kampong Pahit, Perak, northwest Malaya (Burton 1967a) in size range and shape and proportion of the constituted fauna. The Malaysian ringed tentaculites are also long, as much as 8mm and have wider space (3.6 to 5.8) rings in 1 mm, interspaces are wide and flat, fine longitudinal ribs numbering between 4 and 7 in 0.2 mm. The Malayan ringed tentaculites commonly proved to be closed to Lower Devonian *Nowakia acuaria* it is possible to correlate the beds with lower Emsian (middle part of Early Devonian. The Taungchun tentaculites might have close similarity to *Nowakia acuaria* of the Zebingyi Formation in Pyin Oo Lwin township described by Aye Ko Aung (in prep.) from Early Devonian (Pragian) Khin Zo chaung limestone Member of the Zebingyi Formation (Aye Ko Aung, 2008). The unit is correlatable with the Early Devonian Zebingyi Formation of Pyin Oo Lwin township, Mandalay Division and possible equivalents of the latter in the Shan State (south) are also stated.

Paper B12

Singkapan batuan yang tersingkap dari Layang-Layang hingga Laban Rata, Gunung Kinabalu, Sabah

ELVAENE JAMES^{1*}, HAMZAH MOHAMAD¹, SHARIFF A.K. OMANG² & MOHD ROZI UMOR¹

 ¹Program Geologi, Pusat pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
 ²Program Geologi, Sekolah Sains dan Teknologi, Universiti Malaysia Sabah *Alamat Emel: star_anne85@yahoo.com

Kerjalapangan dari Layang-Layang hingga Labah Rata telah dilakukan di Gunung Kinabalu, Sabah. Singkapan batuan yang tersingkap ini terletak dibahagian tengah Gunung kinabalu. Kajian ini dilakukan bertujuan untuk mengenal jenis-jenis batuan yang terdapat di sepanjang jalan rintisan dari Layang-Layang hingga ke Laban Rata. Selain itu, kajian ini juga bertujuan untuk melihat kaitan antara batuan dilapangan seperti hubungan sempadan antara batuan, kaitan kandung-mengandung dan kaitan terobosan antara batuan. Batuan yang terdapat dilapangan boleh terbahagi kepada enam jenis batuan iaitu granit hornblend berbutir sederhana, granit hornblend berporfirit, serpentinit, batuan Formasi Trusmadi, korok aplit dan korok pegmatit. Namun begitu, dua jenis batuan sahaja yang dominan iaitu granit hornblend berbutir sederhana dan granit hornblend berporfirit. Kaitan antara batuan menunjukkan bahawa batuan granit hornblend berporfirit menerobos kedalam batuan granit hornblend. Ini ditunjukkan oleh sempadan batuan diantara batuan granit hornblend dan granit hornblend berporfirit di bahagian Laban Rata. Berdasarkan kepada saiz butiran keduadua batuan di sempadan batuan, didapati pengaturan fenokris feldspar alkali kebanyakkannya adalah selari dengan sempadan batuan. Selain daripada itu, pada tepi batuan granit hornblend berporfirit berdekatan dengan sempadan juga turut mengalami penghabluran semula. Namun fenokris feldspar alkali masih sedikit jelas kelihatan dan sebahagian daripada mineral telah terhablur membentuk mineral yang lebih kecil dan bersaiz butiran halus. Kaitan kandung-mengandung antara batuan menunjukkan bahawa batuan serpentinit dan Formasi Trusmadi terkandung didalam batuan granit hornblend berporfirit. Ini menunjukkan bahawa serpentinit dan batuan Formasi Trusmadi merupakan batuan yang lebih tua daripada batuan granit hornblend berporfirit. Selain itu, di Pondok Rehat Villosa terdapat korok aplit yang menerobos batuan granit hornblend berporfirit. Penerobosan ini menunjukkan bahawa korok aplit mempunyai usia yang lebih muda dari granit hornblend berporfirit.

Geologi Teluk Kubang Badak, Langkawi, Kedah

KAMAL ROSLAN MOHAMED

Geology Programme, School of Environmental and Natural Resources Sciences
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
Alamat Emel: kamal@ukm.my

Teluk Kubang Badak terletak di bahagian utara Pulau Langkawi dan merupakan kawasan di mana Formasi Machinchang dan Formasi Setul bersempadan. Formasi Machinchang terletak di bahagian barat, merangkumi Pantai Pasir Tengkorak, Tanjung Buta serta Pulau Jemuruk, manakala bahagian timurnya pula terdapat Formasi Setul yang merangkumi Tanjung Sabung, kawasan kuari simen dan juga bukit Gua Pinang.

Jujukan Formasi Machinchang di Pantai Pasir Tengkorak hingga Tanjung Buta memperlihatkan beberapa sekutuan fasies. Sekutuan fasies batu pasir berlapisan silang terdiri daripada himpunan lapisan batu pasir tebal hingga masif dan banyak struktur lapisan silang boleh diperhatikan, termasuk lapisan silang bersaiz mega. Dalam sekutuan fasies ini juga boleh ada lumpur nipis dan kadang-kadang memperlihatkan struktur riak simetri. Satu lagi ialah sekutuan fasies selang lapis batu lumpur, lodak dan batu pasir nipis. Secara umumnya lapisan lumpur lebih tebal daripada lapisan pasir. Antara struktur sedimen yang utama boleh diperhatikan ialah canggaan akibat larian air ke atas yang membentuk struktur api dan kesan beban serta kesan riak simetri. Terdapat juga beberapa kesan hasil daripada korekan organisma dalam lapisan lodak.

Di Pulau Jemuruk terdapat lapisan batu pasir, lodak dan lumpur yang membentuk dua sekutuan fasies yang lain. Sekutuan pertama terdiri daripada perlapisan batu pasir yang sederhana tebal, terdapat struktur laminasi selari serta lapisan silang bersudut rendah dan tiada struktur lapisan silang bersadu bersadut tinggi. Dalam sekutuan fasies ini pernah dilaporkan penemuan serpihan fosil trilobit. Sekutuan fasies kedua terdiri daripada selang lapis batu lumpur dan batu pasir nipis. Dalam sekutuan ini terdapat fosil kesan yang menjalar di atas lapisan.

Sempadan dua formasi ini jelas kelihatan di Tanjung Sabung yang bertentangan dengan Pulau Jemuruk. Di sini boleh diperhatikan lapisan sedimen klastik Formasi Machinchang yang terdiri daripada batu pasir, lodak serta syal terletak di bawah lapisan masif batu kapur Formasi Setul secara selaras. Sebelum jujukan klastik Machinchang berubah kepada batu kapur Setul, terdapat satu zon peralihan setebal beberapa meter di mana batu kapur dan batu klastik saling berlapis nipis. Ini menunjukkan peralihan daripada Machinchang kepada Setul tidak berlaku secara mendadak, tetapi peralihan secara perlahan-lahan.

Batu kapur Formasi Setul yang terdapat di Teluk Kubang Badak berlapisan tebal dan masif. Batu kapur ini telah berubah yang mana sebahagian besarnya telah menjadi marmar. Perubahan batu kapur ke marmar ini disebabkan oleh rejahan granit yang terdapat di Bukit Sawar.

Selain daripada jujukan batuan Paleozoik Formasi Machinchang dan Formasi Setul, di Teluk Kubang Badak juga terdapat satu endapan kuaterner yang terletak di bukit Gua Pinang. Endapan Kuaterner ini terdiri daripada himpunan cengkerang kuno yang tidak diketahui usianya. Himpunan cengkerang kuno yang serupa telah ditemui di beberapa tempat di Langkawi dan ada yang menunjukkan usia hingga 7000 tahun. Endapan cengkerang ini terletak puluhan meter lebih tinggi daripada aras laut sekarang dan merupakan satu petunjuk aras laut masa lampau.

Paper B14

Geologi dan geomorfologi kepulauan dalam cadangan Geopark Delta Sarawak

Dana Badang

Jabatan Mineral dan Geosains Malaysia, Sarawak

Terdapat lapan buah pulau kecil dalam cadangan Geopak Delta Sarawak. Pulau-pulau ini terletak di utara kawasan Bandaraya Kuching dan di Kuala Salak. Gugusan kepulauan terdiri daripada Pulau Satang Besar, Satang Kecil, Sampadi, Tukong Ara dan Tukong Banun terletak 3 hingga 10 km ke utara luar pantai Kuching. Manakala gugusan kepulauan mengandungi Pulau Salak, Kelasah dan Kera terletak di Kuala Salak. Pulau Satang Besar, Sampadi, Satang Kecil, Tukong Ara dan Pulau Kera didominasi oleh Batu Pasir Kayan; Pulau Tukong Banun, Salak dan Kelasah dibentuk oleh batuan Formasi Pedawan yang termetamorf sentuh disebabkan oleh rejahan igneus. Di Pulau Salak terdapat beberapa rejahan igneus yang lebih dominan berbanding di pulau-pulau lain yang membentuk rejahan kecil seperti daik dan sil. Morfologi pantai di kebanyakkan pulau dibentuk oleh hamparan batuan yang mendatar, kadang-kadang dilitupi oleh kelikir di beberapa tempat. Terdapat juga pantai di beberapa pulau yang dibentuk oleh morfologi tebing yang curam. Morfologi pantai perpasir didapati di bahagian selatan Pulau Satang Besar. Pulau Salak menunjukkan morfologi berbeza kerana didominasi oleh perbukitan yang dibentuk oleh beberapa stok igneus. Kewujudan pulau-pulau ini membentuk kepelbagaian landskap yang mencirikan keunikan tersendiri dalam sistem delta Sungai Sarawak.

PERTEMUAN PERSATUAN (MEETINGS OF THE SOCIETY)

There are eight small islands within the proposed Sarawak Delta Geopark. These islands are located at the offshore area north of Kuching City area and also at the mouth of Sungai Salak. Islands of Satang Besar, Satang Kecil, Sampadi, Tukong Ara and Tukong Banun located 3 to 10 km to the north of Kuching coastal area. Meanwhile another group of islands namely, Pulau Salak, Kelasah and Kera are located at the Salak river mouth. The Satang Besar, Sampadi, Satang Kecil, Tukong Ara and Kera Islands are composed mainly the Kayan Sandstone; Tukong Banun, Salak and Kelasah Islands are underlain by the contact metamorphosed rock of the Pedawan Formation, which was formed as the result of igneous body intrusion. In Salak Island, there are several igneous occurrence of the intrusive body compared to other islands with only small intrusions such as dyke and sill. The beach in these islands solely made up flat rock pavements, however in places covered with gravel deposit. The islands are also bounded by cliff faces. Sandy beach are observed in the southern part of the Satang Besar Island. Salak Island showed a different morphology of mountain formations underlain by the igneous stocks. These islands had created landscapes that characterize its uniqueness in the Sarawak River delta system.

Paper B15

Geokimia batuan igneus Pulau Pangkor, Lumut, Perak

Mohd Rozi Umor^{1*}, Azman Abd. Ghani² & Hamzah Mohamad¹

¹Program Geologi, Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor

²Jabatan Geologi, Fakulti Sains, Universiti Malaya, 50603 Kuala Lumpur Alamat Emel: mohdroziumor@hotmail.com

Pulau Pengkor terletak di bahagian pantai barat Semenanjung Malaysia. Kajian dilakukan untuk menentukan jenis-jenis batuan igneus dan geokimia batuan igneus yang tersingkap di Pulau Pangkor dan pulau sekitarnya. Sebanyak 40 stesen cerapan dilakukan meliputi 28 stesen di sepanjang rintisan jalan raya dan 12 singkapan meliputi tinjauan menggunakan bot merangkumi pulau-pulau berhampiran. Berdasarkan saiz butiran, warna dan kewujudan batuan, didapati empat jenis batuan boleh dibezakan di lapangan, iaitu granit biotit berbutir kasar berporfir, granit biotit berbutir sederhana, mikrogranit berporfir dan telerang mikrogranit. Daripada 40 sampel yang diambil, sebanyak 8 sampel terpilih telah dianalisis secara XRF untuk mendapat 10 unsur-unsur major dan 20 unsur-unsur surih. Ia menunjukkan julat peratusan SiO, antara 75.52 – 80.09 wt%, dengan purata 77.26 wt%. Unsur Al₂O, adalah tinggi iaitu berjulat antara 12.58 – 14.59 wt% dengan purata 13.73 wt%. Unsur-unsur TiO₂, MnO dan P₂O₂ menunjukkan nilai yang sangat rendah masing-masing dengan julat dan purata, 0.13 – 0.32 wt% dan 0.22 wt%; 0.01 – 0.04 wt% dan 0.03 wt%; 0.05 – 0.13 wt% dan 0.08 wt%. Unsur MgO adalah tersangat sedikit, iaitu kesemua sampel di bawah had pengesanan kecuali sampel S3(a) yang bernilai 0.05 wt%. Nilai kepekatan K₂O adalah tinggi dengan julat antara 5.11 – 6.33 wt% dan purata 5.53 wt%. Manakal unsur Na, O dan Fe, O, adalah rendah dengan masing-masing julat dan purata iaitu 0.75 – 1.04 wt% dan 0.89 wt%; 0.79 – 2.17 wt% dan 1.63 wt%. Plotan Gambarajah Harker menunjukkan tren negatif yang baik oleh unsur TiO,, Al,O,, Fe,O, dan MnO. Unsurunsur CaO, Na,O, K,O dan P,O, menunjukkan tren mendatar. Tren ini menunjukkan empat jenis batuan berasal daripada punca magma yang sama. Nilai jumlah alkali adalah tinggi iaitu antara 5.93 – 7.27 wt% menunjukkan batuan dikelaskan sebagai batuan siri alkali. Nilai nisbah A/NK dan A/CNK didapati berjulat antara 3.45 - 7.04 dan 1.46 - 1.58 masing-masing. Ini menunjukkan batuan adalah jenis peralumina dan dikelaskan sebagai granit jenis-S yang berasal daripada kerjaan semula batuan sedia ada.

Paper B16

Heavy mineral pattern in stream sediments of Kuala Krai area, Kelantan

Wan Fuad Wan Hassan* & Muhamad Hafiz bin Juhari

Geology Programme, School of Environmental and Natural Resources Sciences
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
*Email Address: wafutu@ukm.my

A study of the heavy minerals in the stream sediments in an area to the south of Kuala Krai, Kelantan was carried out. The lithology of the area consist of Late Paleozoic sedimentary rocks of the Gua Musang Formation being intruded by an igneous complex consisting of acid igneous rocks from diorite to granite. A total of 16 heavy mineral samples were collected by panning. The samples were dried, sieved and later the light minerals were removed by a heavy liquid. The mineral composition of the heavy mineral sample was estimated by point counting under a binocular microscope. Common major minerals such as ilmenite, zircon and magnetite were identified by their physical properties whereas the more uncommon ones such as hornblend and cassiterite were identified by XRD. The heavy mineral fractions were also run through a Frantz Isodynamic Magnetic separator to find out the magnetic resistivity pattern of the individul sample. Each sampel composition was plotted onto an ilmenite-zircon-hornblende triangular diagram. Result of the analyses show the common major minerals present in almost all sampls are ilmenite, zircon and hornblend while minor minerals are magnetite, monazite, xenotime, garnet, pyrite, mica, cassiterite, etc. The magnetic resistivity disitribution patterns show high peaks at the 0.2-0.4 ampere fraction in almost every sample indicating the presence of ilmenite and hornblende while the less magnetic fraction dominated by zircon is less prominent. Hornblende which is ubiquitous in the igneous rocks here is detected in the heavy mineral, and to some degree, can point to the sediment provenance.

Site investigation using integrated methods of borehole and resistivity imaging for silty soil – A case study

HARYATI AWANG* & SYAHRIL AMRI A.MALEK

Faculty of Civil Engineering, Universiti Teknologi MARA Shah Alam, Selangor *Email Address: harya406@salam.uitm.edu.my

Site investigation (SI) is an essential work that provides preliminary background of the site and information for the design, construction and environmental assessment. The purposes of site investigation are to evaluate the general suitability of the site for the purposed project, to enable an adequate and economical design, to disclose and make provision for difficulties that may arise during construction due to ground and other local condition (Budhu, 2007). In order to gather information of sub-surface, borehole technique is commonly used, where heavy machineries are used to drill shaft at site. The borehole data then recorded until it reaches the hard layer. This type of tedious works may bear a high cost and time consuming. However resistivity imaging is one of the geophysical methods that also can be used to determine the soil layer. Electrical resistivity permits the delineation of the main soil types and, when performed repeatedly over time, also provides information on soil properties. The information collected is usually very useful for civil engineering works (Lian, 2005). In order to obtain the best method in SI that can save time and cost, a case study was carried out in silty soil using borehole drilling and resistivity imaging methods. The results of resistivity profile and borehole data then were compared. Results of engineering properties that were included in the borehole data, i.e. SPT, N-value was correlated with resistivity value. From the result, it was found that SPT, N-value can be estimated by resistivity value. In consideration to time, the resistivity method showed that it can provide data quicker than borehole method.

Paper B18

Survei graviti untuk kajian morfologi kars di subpermukaan kawasan Lembah Kinta, Perak - Penemuan awal

ABD RAHIM HARUN & ABDUL RAHIM SAMSUDIN

Program Geologi, Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor

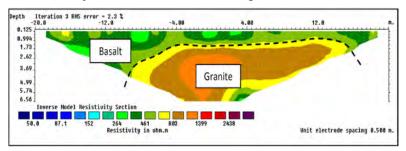
Satu survei graviti telah dijalankan oleh kumpulan geofizik UKM di Lembah Kinta, Perak pada Jun 2009 dan Februari 2010. Kawasan kajian terletak di antara garis latitud di Selatan 4°18'8.4" hingga ke Utara 4°44'04" dan garis longitud di Barat 100°55'03" hingga ke Timur 101°57'55.8". Kawasan kajian merupakan satu lembah yang di apit oleh Banjaran Titiwangsa di bahagian timur dan Gunung Kledang di bahagian baratnya.

A regional gravity survey had been carried out in Kinta Valley, Perak in June 2009 and February 2010. The study area located between latitude line of $4^{\circ}18^{\circ}8.4^{\circ}$ N and $4^{\circ}44^{\circ}04^{\circ}$ N and longitude line of $100^{\circ}55^{\circ}03^{\circ}$ E and $101^{\circ}57^{\circ}55.8^{\circ}$ E. The valley situated at the centre between the peninsular main range at the western part and Kledang Hill in the east. A total of 372 gravity stations had been measured using the Scintrex CG-5 gravity meter, with stations interval range between 0.5-2 kilometre. The Tiernan-Wallace altimeter was use to determine the height of every stations. The reduction process had been done using the software "Magnetic and Gravity Reduction" (MREDUC), and then been gridded, filtered and analysed using the Oasis Montaj(Geosoft) software.

The gravity survey in Kinta Valley, Perak successfully delineated the difference lithological boundary in the subsurface due to fault in regionale scale. A total of 20 anomalies due to karstic morphology in the subsurface such as depressions and pinacles were clearly delineated. From the total horizontal derivative map done for regional and the residual map the gravity survey successfully delineated many lineament structures due to tectonic activity in the subsurface at depth and shallow part respectively.

Electrical Resistivity Imaging to characterize weathered basalt and granite

Ahmad Tajuddin Hj. Ibrahim & Che Noorliza Lat


Department of Geology, University of Malaya, 50603 Kuala Lumpur Email Address: ahmadt@um.edu.my

This electrical resistivity imaging project was carried out in the Kuantan, Pahang area where there are abundant exposures of basalt and granite of weathering grades IV (severely weathered) to VI (residual soil). Four profiles, measuring 40 to 80 meters long, were taken at 1 and 2 m spacing, respectively. Grain size analysis was done on the soil samples taken at the sites. The soil samples were further tested for resistivity and moisture content. Electrical resisitivity is said to vary with grain size distribution and water content, and is in turn related to the soil strength.

It was observed that basalt and granite gave different range of readings. The resistivity range for weathered basalt is about 300 to 800 Ω m while for granite, it is between 800 to 4000 Ω m. The range indicates the difference in the amount of weathering the rocks had been through, along with other factors such as amount of moisture available.

Grain size analysis showed that the soils originated from basalt had more finer grain materials than that of granite. As expected, soil resistivity was found to be inversely correlated to soil moisture content; the higher the moisture content, the lower the resistivity. For this test, we start with dried samples, then increased the moisture content until the resistivity reading shows little or no variation. The resistivity-moisture content curves for granitic soils displayed a slower decay covering a larger range of values compared to basalt of similar moisture content. The range of resistivity are $100 \text{ to } 6000 \Omega \text{m}$ for granitic soil and $80 - 1000 \Omega \text{m}$ for basaltic soils. The presence of clay and higher percentage of ferromagnesium minerals in basaltic soil contributed to the lower resistivity readings.

This study shows the effectiveness of this method in identifying not only the type of rocks in the subsurface (granite or basalt) but also the varying degrees of weathering within the rocks. The lab results are in tandem with the field results, showing basalt as having lower resistivity values. Dried soil samples give higher resistivity values as compared to the ones obtained in-situ because of the highly resistive air filling the spaces in between the unconsolidated grains. Resistive zones are associated with higher strength; thus integrating these results with geotechnical information makes this method an invaluable tool in site investigation. This study illustrates that subsurface geology of the area can be studied using this efficient, economical and time-saving method reducing the reliance on invasive and expensive alternatives such as drilling.

Paper B20

Electrical Resistivity method – An application in Site Engineering work

Samsudin Hj. Taib

Department of Geology, University of Malaya, 50603 Kuala Lumpur Email Address: samsudin@um.edu.my

Electrical resistivity method has been used by many in environmental and engineering site investigation. However, the interpretation of the subsurface resistivity distribution requires prior information. A cases study will be presented where prior information has helped improved knowledge of true subsurface conditions and has aided in appropriate mitigations measures to be carried out.

High-resolution imaging of the groundwater potentials with geoelectrical resistivity tomography in fluvial deposit, Machang, Kelantan, Malaysia

Nur Islami^{1,2*}, Samsudin Hj. Taib¹ & Ismail Yusoff¹

¹ Department of Geology, University of Malaya, 50603 Kuala Lumpur ²Jurusan Fisika-Pmipa, University of Riau, Pekanbaru, Indonesia *Email Address: nris@um.edu.my

The first high-resolution images of the groundwater potentials obtained with the geoelectrical resistivity tomography are presented. The geoelectrical resistivity profiling surveys were conducted to determine the characteristics of the subsurface and the groundwater within the aquifer. They made up of twenty one traverse lines of different site location with Wenner configuration. The Machang plain is covered with Quaternary sediments overlying granite bedrock. The drainage system is dendritic with the main river flowing into the South China Sea. The relatively high resistivity contrast between the Quaternary basinal clastic sediments and the pre-Quaternary bedrock opened the way to extract geological information from geoelectrical resistivity explorations. All the high-resolution electrical images show a remarkable resistivity contrast between relatively low resistivity values in the shallow layers and relatively high resistivity zones in the deeper subsurface. The fluvial Machang is one of the more complex components of the Quaternary deposit of the Kelantan Delta. The thickness of Quaternary deposit in the southern and northern part ranges from 5 m to 20 m respectively. The geometry of the pre-Quaternary bedrock, the location and dip of the groundwater potential are imaged. The high-resolution electrical images allow us to trace of the groundwater potential geometry of the basin. The electrical imaging highlights the irregular shape of the basin, which is bordered by Machang Boundary Range and Kelantan River at the east and west side respectively. In longitudinal cross-section, the groundwater potentials appear as a mosaic of good, bad and moderate for an aguifer with resistivity value of 20 - 100 ohm.m, 100 - 200 ohm.m and 200 - 350 ohm.m respectively. Different groundwater potentials or basins are separated by intrabasinal highs of pre-Quaternary bedrock. In transverse cross-section, the basin is an irregular, generally dipping to the northwest. It allows the shallow aquifer flow to the Kelantan River as the ending border of the area at the northwestern side.

Paper B22

Pemetaan hidrogeofizik di Pulau Kapas, Terengganu

Nurul Nabihah Hussin, Che Noorliza Lat* & Ahmad Tajuddin Hj. Ibrahim

Department of Geology, University of Malaya, 50603 Kuala Lumpur *Email Address: noorliza@um.edu.my

Satu kajian keberintangan telah dilakukan bagi mengenalpasti litologi subpermukaan dan mencirikan air tanah di Pantai Barat, Pulau Kapas, Terengganu. Kawasan ini semakin pesat membangun dengan industri perlancongan. Keperluan untuk air tawar semakin meningkat dan wujud kemungkinan berlaku percemaran air masin.

Pulau Kapas terdiri dari beberapa jenis batuan, iaitu selang-lapis syal dan batu pasir berumur Perm-Karbon, konglomerat Kapas dari usia Trias dan batuan intrusif dari usia Kretas. Kajian ini tertumpu di kawasan barat Pulau Kapas kerana kaedah keberintangan memerlukan kawasan lapang dan permukaan agak lembut dan tidak berbatu agar mudah dimasukkan elektrod. Kawasan pantai berpasir hanya boleh didapati di sini sedangkan di bahagian lain, pemukaannya terdiri dari batuan pejal. Permukaan yang tidak boleh ditusuki elektrod untuk memasukkan elektrod dan mengukur nilai keupayaan menyebabkan kaedah keberintangan tidak boleh dijalankan.

Sebanyak 11 garisan tinjauan dilakukan dengan menggunakan peralatan ABEM SAS 4000. Cerapan dilakukan berdasarkan tatasusunan Wenner SX. Data diproses menggunakan perisian RES2DINV bagi mendapatkan model pengimejan dua dimensi bagi setiap garis tinjauan. Sempadan litologi dan jenis air berlainan dapat ditentukan dari imej ini. Beberapa sampel air permukaan juga diambil dan diuji tahap kemasinan, kekonduksian dan jumlah pepejal terlarut (TDS) dengan menggunakan peralatan Hach SensIon5. Data yang didapati dibanding dengan data keberintangan.

Di sesetengah tempat, zon air masin didapati berada dekat dengan permukaan, lebih kurang pada kedalaman dua meter. Air tawar hadir dalam akuifer terkekang dan tidak terkekang. Zon air payau berada di antara air tawar dan air masin. Tidak semua imej menunjukkan kehadiran ketiga-tiga jenis air tanah. Nilai yang digunakan bagi penentuan jenis air ialah kurang dari 5 ohm.m bagi air masin, julat 5 ke 100 ohm.m untuk air payau dan lebih dari 100 ohm.m untuk air tawar. Data parameter air menunjukkan kehadiran air tawar, air masin dan air payau di permukaan seperti yang didapati di subpermukaan. Seperti yang dijangka, nilai kerintangan berkadar terus dengan nilai TDS dan kemasinan, dan berkadar songsang dengan nilai kekonduksian.

Kajian ini menunjukkan keberkesanan kaedah pengimejan geolektrik dalam menentukan ciri air subpermukaan dalam litologi yang sampir homogen. Kaedah ini agak mudah dilakukan, memerlukan tenaga kerja yang sedikit dan tafsiran imej dua dimensi boleh dilakukan dengan cepat. Pencemaran air masin dari laut boleh dikenalpasti untuk perancangan pembangunan di masa hadapan.

Geophysical techniques for hydrological investigations

Mohammed I. I. Abu-Shariah, Samsudin Hj. Taib, Ismail Yusoff, Ros Fatihah Muhammad, Samsudin Shahid

Geology Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia Email Address: mohdshariah@yahoo.com

Geophysics in Greek means "physics of earth" (Scheidegger, 1976). Geophysics is the application of physical principles to investigate and study the interior of the earth, from land surface to the inner core, is known as solid earth geophysics (Reynolds, 1997 and Sheriff, 1982). This can be subdivided further into: global geophysics (pure geophysics) and applied geophysics (exploration geophysics or geophysical prospecting). Applied Geophysics is concerned with the investigation of the Earth's crust and subsurface condition, usually with economic exploitation objectives, by making and interpreting measurements of physical properties of the earth. It covers a wide range of application, which includes sub-disciplines: engineering geophysics, environmental geophysics, archaeo-geophysics, hydro-geophysics, and hydrocarbon exploration. The application of geophysical surveys to evaluate the geological and hydrological conditions of underground water studies and prospecting is called hydro-geophysics. Hydro-geophysics utilizes different physical properties of earth materials to study subsurface structures. Major factors that have to be considered in the design of a geophysical survey for hydrogeological application (MaCann & Green, 1996) are as follows depth of penetration into the geological formation, vertical and lateral resolution required for the anticipated targets, and contrast in physical properties between the target and its surroundings. A preliminary stage of the investigation involves a desk study and reconnaissance survey; this is followed by the main stage of detailed field exploration and ground investigation; data review then continues during the groundwater extraction to expose more details of the groundwater quality and conditions. The significance of the research appears considerably in the exploration and studying geological units by mapping their subsurface features and characteristics using geophysical techniques for hydro geological applications for studying subsurface karstic limestone using geophysical techniques at Ipoh, Perak, Malaysia (Abu-Shariah et al., 2000; Abu-Shariah, 2002). Therefore, different geophysical techniques were applied in many hydrogeological researches, and satisfactory results were obtained of multi-applications objectives. The geophysical techniques are useful in the assessment and delineation of subsurface structures and features, and provide costeffective data for this target.

References

Abu-Shariah, M. I., 2002. Imaging Subsurface Structure & Geohazard evolution of Selected Limestone Sites in Peninsular Malaysia Using Integrated Geophysical Techniques & Geoelectrical Resistivity Computer Tomography Modeling, Ph. D. Thesis, Universiti Kebangsaan Malaysia.

Abu-Shariah, M. I., Abdul Rahim Samsudin, Umar Hamzah & Abdul Ghani Refak, 2000. High resolution seismic reflection and geoelectrical resistivity imaging at Pengkalan School Teacher's Quarters Pegoh, Ipoh, Malaysia, Bulletin Geological Society of Malaysia, 44, 75-82

McCann, D. M. and Green, C. A. (1996), Geophysical Surveying methods in a Site Investigation Programme, Paper on Advances in site investigation practice: Proceeding of the international conference held in London on 30-31 March 1995, 687-700

Reynolads, J. M., 1997. An introduction to applied and environmental geophysics: John Wiley & Sons.

Scheidegger, A. E., 1976. Foundation of Geophysics, Elsevier Scientific Publ. Co., New York- USA.

Sheriff, R. E., 1989, Encyclopedic dictionary of exploration geophysics. 2nd edition. Geophysical Reference Series: Soc. Explor. Geophysics.

Paper B24

High resolution seismic refraction survey in urban area

Wan Suriani A Raman* & Zuhar Tuan Harith

Geosciences and Petroleum Engineering Departmernt University Technology PETRONAS, Tronoh, Perak *Email Address: arsuriani@yahoo.com.my

The seismic refraction survey is of the methods normally used to get the subsurface geology for a particular area. In this paper, the high resolution seismic refraction survey is conducted in urban area. The area chosen in this survey is a 100 m x 200 m square site at Damansara. The objective of the survey is to get the subsurface geology of this area using the refraction method and investigate the bedrock thickness of the area. The classic way of the seismic data collection using hammer and a striker plate is used throughout this survey. The layout spread is designed according to the objectives of this survey and based on the area's condition as well. A total of 98 lines (50 inline and 48 crossline) were collected during the acquisition phase. Some of the data collected is present and discuss in this paper. The challenges during the data collection are mostly noise from the nearby construction area and noise from the surrounding area mostly noise coming from the vehicle at the highway and roads around. One of the most challenging constraints is the coring activity at the same site. The unpredictable weather also plays a major role in this survey. In order to increase the data quality, each shot was stacked more than 30 stacks. The collected data then processed using the IXRefrax software. All lines show a two layer case where the first layer is around 7 m - 16 m in depth, with the average velocity of 523 m/s and the second layer of 1933 m/s. The seismic were then correlated with well data and it shows that the second layers is corresponds to completely weathered and highly weathered layer

Iron mineralisation, south Gunung Jerai, Kedah, implications of genesis

Teh Guan Hoe* & Teh Jin Yuan

Department of Geology, University of Malaya, 50603 Kuala Lumpur *Email Address: tehgh@um.edu.my

The Gunung Jerai area consists a series of sedimentary rocks, which have been metamorphosed by granite intrusion, namely, the Cambrian-aged Jerai formation, with a series of exceedingly hard quartzites and much softer schists, which can be correlated to the Machinchang formation, and the Sungai Petani formation which consists of shales of Lower Silurian age. The granite is believed to underlie the sedimentary rocks throughout the Gunung Jerai area. Besides, there are also wide-spread occurrences of pegmatite intrusions and quartz veins throughout the Gunung Jerai area.

The greatest concentrations of iron ore in the south Gunung Jerai area are to be found in the schists and quartzites of the Jerai formation, as well as in the shales of Sungai Petani formation, together with pegmatite intrusions and quartz veins which cut through them. The chief iron minerals found are magnetite, hematite, and goethite. Magnetite occurs chiefly in the form of crosscutting veinlets or as sporadic disseminations along the bedding planes of the country rocks. Besides, in a number of localities, magnetite is associated with pegmatite intrusions and/or quartz veins. Hematite on the other hand commonly occurs with the magnetite, as a secondary alteration product of magnetite. Hematite of secondary lateritic or residual origin has also been found, formed by the superficial desilication of ferruginous shale. Goethite is mostly secondary in nature, accumulated in the vicinity of primary magnetite and hematite due to weathering and erosion.

Paper P2

Physical and geochemical characterisation of gold mineralisation, Kg Ayer Puteri – Kg Seri pantai area, Mersing, Pahang

TEH GUAN HOE*, MUHAMAD MAHRAN & RABIATUL ADAWIYAH

Geology Department, University of Malaya *Email Address: tehgh@um.edu.my

The Kg Ayer Puteri-Kg Seri Pantai area is located 5-8 km south of Mersing town. The area is underlain by metasediments of the Mersing Beds of Carbo-Permian age, consisting of a sequence of thick and thin beds of medium grained quartzite, phyllite and slate. The rocks are tightly folded into tight isoclinal folds striking north-northwest.

Gold in the Kg Ayer Puteri area was panned from the alluvial mine in the vicinity of Sg Lengan Batu. The bedrock in the area is cut by numerous quartz veins. Physically the gold grains at Kg Ayer Puteri have roundness of subrounded to angular and sphericity of prismodal to spherical.

Gold in the Kg Seri Pantai area was panned from two areas, namely offshore placers on the beach and those inland, eluvial and colluvial deposits on slopes fronting the beach. Physically the gold grains at Kg Seri Pantai beach area have good sorting, are subangular to subrounded for roundness and subprismodal to subdiscoidal for sphericity with lengths of 0.5mm to 3mm and widths of 0.5mm to 2mm, whereas those from the inland area are poor sorted, are angular to subangular for roundness and subdiscoidal to discoidal for sphericity with lengths of 1mm to 5mm and widths of 1mm to 4mm.

Geochemically the gold grains from the inland area in Kg Seri Pantai area have 3 main sets of fineness values ranging from 834.6-851.4, 873.8-897.2 and 902.8-917.3, whereas the beach area gold grains have fineness values have 2 main sets of fineness values ranging from ranging from 830.8-845.8 and 871.1-899.5. The gold grains from the Kg Ayer Puteri area have 3 main sets of fineness values that range from 815-825, 847-884 and 902-929.

Potential debris flow study of the Hulu Kelang area

ZAKARIA MOHAMAD, MOHD. SIDI DAUD, & SYED OMAR

Jabatan Mineral dan Geosains Selangor/Wilayah Persekutuan Email Address: zakaria@jmg.gov.my

The susceptibility of debris flow in 62 basins that lay between Taman Tun Razak, Bukit Antarabangsa and Kg. Kemensah in Mukim Hulu Kelang, District of Gombak, Selangor Darul Ehsan, with a total land area of approximately 14 km² was investigated. Generally, most basins are within the Class III and IV areas of the construction suitability classification. The basins are characterised by a long stream channel, with some parts being narrow with steep sideslopes. All 62 basins are either partly or minimally disturbed by residential and related infrastructure developments, while the remaining parts are under primary or secondary forest. There are also basins where the developed areas are at both the upper and lower ends of the basin.

The study was carried out in three stages, i.e. data collection and desktop study, field mapping and subsurface investigation (including laboratory tests on soil samples), and data analysing. In the first phase of the study, the topography, geology, landuse and soil maps, aerial photographs, satellite imageries and rainfall data were collected. In the second stage, field data, including characteristics of existing and relict landslides, environmental factors (comprising of geology, physical characteristics of soil, basin morphology, geomorphology, hydrology and land cover) and elements at risk were compiled in the period between October 2009 and February 2010. In the third phase, the data obtained from the second stage were first digitized in the GIS. The results are illustrated on engineering geology maps and detailed cross-sections which provide descriptions through the entire main waterway of each basin based on surface mapping.

Subsequently, information obtained from fieldwork, data derived from GIS analysis (i.e. slope, flow direction), rainfall and soil data that are identified as critical contributing factors for the occurrence of debris flow/landslide will be assigned a weighted value that is expected to be proportionate to the relative contribution to the hazard. Specifically, this process will require that each factor be subdivided into a number of relevant classes, before a weighted value is assigned to each class. All factor maps are then converted to the raster structure in a GIS for the following process, which is overlaying of the weighted factor maps to obtain scores of each terrain unit. The obtained scores will then be classified to produce the landslide/debris flow susceptibility or hazard map. A physical vulnerability map will also be produced by identifying the elements at risk and the potential loss of life and economic losses. A landslide/debris flow risk map will be generated as a product of the hazard and vulnerability maps.

Paper P4

Kajian kestabilan dan pemuliharaan geologi ke atas Permatang Kuarza Genting-Kelang di Ampang, Selangor

Qalam Azad Rosle¹, Zakaria Mohamad¹, Ros Fatihah Muhammad², Khairul Azlan Mustapha² & H.D.Tjia³

¹Jabatan Mineral & Geosains Selangor / Wilayah Persekutuan ²Jabatan Geologi, Universiti Malaya ³13 Jalan P8 B/3, 62250 Putrajaya

Permatang Kuarza Genting-Kelang merupakan mercu tanda semulajadi yang menjulang di sebelah utara Kuala Lumpur. Ianya seakan membentuk satu sempadan tajam di antara Bandaraya Kuala Lumpur (di bahagian selatan) dan kawasan hutan tropika dan empangan terpelihara (di bahagian utara). Permatang Kuarza Genting-Kelang adalah terbentuk hasil dari pengisian hidrotermal kuarza di sepanjang zon rekahan yang selari dengan Zon Sesar Kuala Lumpur yang berjurus 290° - 110°. Permatang ini dibentuk oleh hampir 99% komposisi kuarza. Disebabkan oleh kedudukannya yang mudah diterokai, telah wujud suatu hubungan antara PKGK dan masyarakat disekitarnya. Ini menjadikannya suatu tapak yang berpotensi untuk dibangunkan secara lestari untuk dinikmati oleh golongan masyarakat yang pelbagai. Satu kajian kejuruteraan geologi yang meliputi bahagian muka dinding selatan permatang yang berkepanjangan 3.2 km keseluruhannya telah dilakukan bagi mengenalpasti kesesuaian tapak untuk dibangunkan sebagai tapak geo-warisan dan geo-pelancongan.

Kajian awal di lapangan melalui penjenisan bentuk fizikal kristal kuarza menunjukkan sebanyak 5 jenis pengkristalan dikenalpasti yang mana berkemungkinan disebabkan oleh fasa-fasa penghabluran yang berbeza. Jenis-jenis kristal kuarza yang dijumpai adalah mengisi ruang-ruang satah retakan yang membentuk telerang-telerang kecil. Sekurang- kurangnya 5 set telerang dijumpai yang mempunyai jurus ke arah NE-SW and SW-NE, E-W, N-S. Kajian unsur minor dan surih telah dijalankan dengan menggunakan kaedah Laser Ablation ICP-MS. Hasil daripada kaedah tersebut menunjukkan kehadiran unsur Mg yang tinggi pada telerang jenis Q5. Telerang Q5 adalah diklasifikasikan mempunyai bentuk yang masif, dengan tiada hablur kristal yang nyata, dan menjurus ke arah yang hampir sama dengan badan utama permatang kuarza. Kandungan Mg yang tinggi pada Q5 boleh ditafsirkan sebagai bawaan unsur daripada badan granitoid berhampiran sesar semasa perejahan hidrotermal dalam fasa pertama.

Kajian kejuruteraan geologi yang memberi fokus di bahagian dinding permatang dan juga cerun koluvium juga dilakukan bagi mengenalpasti potensi kegagalan. Terdapat beberapa set kekar dan sesar yang telah dikenal pasti. Secara umumnya orientasi

PERTEMUAN PERSATUAN (MEETINGS OF THE SOCIETY)

set-set sesar utama adalah menjurus hampir ke utara. Sesar tersebut yang dicirikan oleh samada batuan breksia ricihan ataupun oleh permukaan lelasan. Saiz bukaan sesar adalah berjulat dari beberapa sentimeter hingga ke beberapa meter. Beberapa set kekar yang bermiring ke arah Utara, Selatan, Timur, TimurLaut dan Barat Daya juga terdapat pada dinding permatang kuarza. Kebanyakkan kekar yang berkemiringan landai adalah dibentuk hasil daripada retakan pelepasan. Retakan-retakan tersebut adalah samada terbuka ataupun tertutup dengan saiz bukaan berjulat dari 0.5cm hingga 5cm. Set-set kekar yang terbentuk kebanyakkanya menghasilkan satah-satah yang tidak stabil. Koluvium juga terdapat di kaki-kaki permatang kuarza yang mana cerun koluvium berkemiringan diantara 30° dan 35°, kecuali yang berhampiran kaki singkapan daik kuarza koluvium yang boleh mencecah 60°. Berdasarkan data yang diambil di lapangan, julat kemiringan cerun dikategorikan sebagai genting hingga amat genting dan berkeupayaan mengakibatkan susutandarat ("mass wasting") pada bila-bila masa.

Paper P5

Cannonball concretions of Northern Sabah, Malaysia

JOANES MUDA

Minerals and Geoscience Department Malaysia, Locked Bag 2042, 88999 Kota Kinabalu, Sabah E-mail address: joannes@jmg.gov.my

Calcareous sandstone concretions are abundant in the Kudat Formation (Oligocene-Early Miocene) of Northern Sabah. They vary in size from small objects less than 1 cm in diameter to great spherical bodies metre-scale in greatest dimension. The field term cannonball concretion is applied to the larger spherical type. Calcareous sandstone concretion is the product of localized precipitation of mineral matter, mostly carbonate, in the pores of sediment about a nucleus such as organic material or rock fragment. The cannonball concretions occur mainly in the sandstone beds of the Tajau Sandstone Member of the Kudat Formation. They are exposed on cliffs and on shore platforms in coastal areas due to sea erosion. Boulders of dislodged concretions due to sea erosion also litter the coastal areas. Mudstone fragments usually occur as nuclei inside the concretions and they are critical elements in the formation of concretions as they act as nucleation areas. Most of the concretions are spherical, oval or elongated in shape and some are stained or capped with reddish-brown hard iron oxide crust. Sandstone concretions are geological objects with high geoheritage values. They contain a frozen record of the condition of the sediment at the time of deposition. They could provide scientific information on the orientation of past fluid flow in the host rock, local permeability trends, variation in groundwater velocity and the types of geological features that influence flow. They also have high aesthetic, cultural and recreational values. They are under potential threats of destruction due to vandalism, unregulated development, irresponsible specimen collection, inappropriate recreational activities and removal of objects and should be protected. The geoconservation measures include erecting 'no vandalism' warning signs, creating awareness and granting legal protection. Geosites with eye-catching sandstone concretions could be developed as geotourism destination. For this purpose, appropriate interpretation and basic infrastructures should be provided. There should be a smart partnership among stakeholders (local community, tourism industry and local authority) to ensure a successful geoconservation and geotourism development through proper planning and management of the site.

Aplikasi GIS dalam penaksiran risiko gelinciran tanah (LRA): Kajian kes bagi kawasan Kota Kinabalu, Sabah, Malaysia

RODEANO ROSLEE^{1*}, TAJUL ANUAR JAMALUDDIN² & MUSTAPA ABD. TALIP³

 Program Geologi, Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, Beg Berkunci 2073, 88999 Kota Kinabalu, Sabah
 SEADPRI, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
 Program Geografi, Sekolah Sains Sosial, Universiti Malaysia Sabah, Beg Berkunci 2073, 88999 Kota Kinabalu, Sabah Alamat Emel: rodeano@ums.edu.my

Aplikasi sistem maklumat geografi (GIS) dalam penaksiran risiko gelinciran tanah (LRA) di Malaysia merupakan suatu bidang sains yang baru diperkenalkan. LRA ditakrifkan sebagai suatu proses membuat cadangan keputusan bagi mengukur tahap tolerabiliti risiko-risiko yang hadir dan memastikan langkah-langkah pengawalan risiko adalah mencukupi, dan sekiranya tidak, langkah-langkah pengawalan risiko alternatif perlu dijustifikasikan ataupun dilaksanakan. Penaksiran risiko merangkumi fasafasa analisis risiko dan penilaian risiko (Fell et al. 2005). Kertas kerja ini memperkenalkan bidang sains baru yang muncul dari konsep LRA dan mengambil kira potensi peranan GIS. Terdapat beberapa skop bagi mengintegrasikan GIS dengan aspek-aspek LRA. Terma-terma seperti bencana, malapetaka, bahaya, kebolehrentanan, kebolehterancaman, elemen-elemen berisiko, risiko, kegagalan dan sebagainya telah digunakan secara bersilih ganti dan sering bersifat samar dalam penyelidikan LRA. Penyelidikan ini bertujuan untuk membangunkan sebuah model LRA yang komprehensif dengan menggunakan teknik GIS yang bermanfaat kepada pihak-pihak berkepentingan dan selaras dengan keperluan tempatan. Bagi mencapai matlamat ini, pertama, sebuah pengkalan data semi-kuantitatif telah dibangunkan melalui rujukan yang ekstensif, kerja lapangan dan kerja makmal. Ini termasuklah kompilasi data sekunder yang diperolehi daripada literatur, kajian penderiaan jauh, pemetaan geologi kejuruteraan, pencirian parameterparameter bencana serta ujian-ujian mekanik tanah dan batuan. Kedua, adalah untuk menetapkan kriteria bagi pengenalpastian bencana gelinciran tanah. Sebanyak tujuh parameter yang berkaitan telah diambilkira; i.e. 1) geologi, 2) fitur-fitur geodinamik, 3) keadaan cerun, 4) hidrologi / hidrogeologi, 5) jenis-jenis guna tanah, 6) langkah-langkah penstabilan cerun yang wujud, dan 7) pencirian kejuruteraan tanah dan batuan. Kesemua parameter-ini digabungkan dan dianalisis bagi menghasilkan sebuah peta tematik yang dikenali sebagai "Peta Pengenalpastian Bencana Gelinciran Tanah" atau LHIM yang kemudiannya ditindan bersama dengan "Peta Taburan Gelinciran Tanah" (LDM) bagi menjana sebuah "Peta Bencana Gelinciran Tanah" (LHM). LDM dihasilkan berdasarkan kepada kajian lapangan bertujuan untuk menandakan lokasi-lokasi gelinciran tanah di kawasan kajian. Ketiga, survei terhadap kebolehrentanan (fizikal, sosial dan persekitaran) dan kompilasi data sekunder terhadap elemen-elemen berisiko (populasi dan nilai harta benda) dijalankan untuk menghasilkan "Peta Kebolehrentanan Gelinciran Tanah" (LVM), "Peta Populasi" (PM) dan "Peta Nilai Harta Benda" (PVM). Melalui pertindihan LVM dengan PM dan PVM, maka "Peta Konsekuensi Gelinciran Tanah" (LCM) dapat dihasilkan. Akhir sekali, "Peta Risiko Gelinciran Tanah" (LRM) pula dihasilkan melalui pertindihan LHM dan LCM, kerana Risiko (R) = Bencana (H) x Kebolerentanan (V) x Elemen-elemen Berisiko (E). Dalam terma bencana gelinciran tanah, hasil LHM bagi kawasan Kota Kinabalu mencadangkan 18% daripada keseluruhan kawasan dikategorikan sebagai Bencana Sangat Rendah, 26% sebagai Bencana Rendah, 30% sebagai Bencana Sederhana, 15% sebagai Bencana Tinggi dan 11% sebagai Bencana Sangat Tinggi. Manakala dalam terma risiko gelinciran tanah, LRM menunjukkan bahawa 22% daripada kawasan ini adalah dalam zon Berisiko Sangat Rendah, 16% dalam zon Berisiko Rendah, 24% dalam zon Berisiko Sederhana, 18% dalam zon Berisiko Tinggi dan 20% dalam zon Berisiko Sangat Tinggi. Kawasan-kawasan dalam zon bencana rendah tidak bermaksud berisiko rendah terhadap gelinciran tanah, dan begitu juga sebaliknya. Darjah "bencana" merujuk kepada kebarangkalian sesuatu bahaya tertentu (ancaman) berlaku dalam suatu jangka masa tertentu (IUGS, 1997), manakala darjah "risiko" merujuk kepada ukuran kebarangkalian dan kemudaratan suatu kesan yang merugikan kepada kehidupan, kesihatan, harta, dan/atau persekitaran. Secara kuantitatif, Risiko = f (Bencana x Potensi Kehilangan Nyawa). Hal ini umumnya dinyatakan sebagai "Kebarangkalian yang berlaku semasa kejadian akan memberi konsekuensi kepada kejadian yang berikutnya" (IUGS, 1997). Lantaran itu, adalah sangat penting bagi kedua-dua LHM dan LRM dihasilkan apabila menjalankan LRA dalam sesebuah kawasan. Penyelidikan ini juga menunjukkan kemampuan teknik GIS mengendalikan data semi-kuantitatif dalam penyelidikan ruangan (spatial) LRA sebagai peralatan berintegrasi yang hebat. Penyelidikan ini juga diharapkan akan dapat menjadi perintis dan memberi sumbangan yang besar dalam pembangunan penyelidikan LRA di Malaysia.

GIS application in Landslide Risk Assessment (LRA) : Case study for Kota Kinabalu area, Sabah, Malaysia

The application of Geographic Information System (GIS) for landslide risk assessment (LRA) in Malaysia is a relatively new emerging science. LRA is defined as the process of making a decision recommendation on whether existing risks are tolerable and the present risk control measures are adequate, and if not, whether alternative risk control measures are justified or will be implemented. Risk assessment incorporates the risk analysis and risk evaluation phases (Fell *et al.* 2005). This paper introduces the emerging science of LRA concept and examines the potential role of a GIS. There is scope for intergrating a GIS with facets of LRA. Terms including hazard, disaster, danger, vulnerability, susceptibility, elements

PERTEMUAN PERSATUAN (MEETINGS OF THE SOCIETY)

at risk, risk, failure etc. are often used interchangeably and ambiguously in LRA research. This research aims to develop a model of comprehensive LRA by utilising GIS technique, which can be significantly benefited by stakeholders and suites best to the local conditions. To achieve this goal, first; a semi-quantitative database was developed through extensive desk, field and laboratory studies. This includes compilation of secondary data from the literature, remote sensing studies, engineering geological mapping, characterisation of hazard parameters and, soil and rock testings. Secondly, is to establish criteria for the landslide hazard identification. Seven related main parameters are taken into account; i.e. 1) geology, 2) geodynamic features, 3) slope conditions, 4) hydrology/hydrogeology, 5) types of landuse, 6) existing slope stabilisation measures, and 7) engineering characteristics of soils and rocks. All these parameters are compiled and analysed to produce a thematic map known as "Landslide Hazards Identification Map" or LHIM. The resulted LHIM is then overlaid with "Landslide Distribution Map" (LDM) to generate a "Landslide Hazard Map" (LHM). LDM is produced based on the field studies in order to locate the landslide locations in the study area. Thirdly, survey of vulnerability (physical, social and environmental) and compilation of secondary data for elements at risk (population and properties value) were conducted to produce the "Landslide Vulnerabilities Map" (LVM), "Population Map" (PM) and "Properties Value Map" (PVM). By superimposing the LVM with PM and PVM, the "Landslide Consequences Map" (LCM) is then generated. Finally, the "Landslide Risk Map" (LRM) is produced by superimposing the LHM an LCM, because Risk (R) = Hazards (H) x Vulnerability (V) x Elements at Risk (E). In terms of landslide hazards, the resulted LHM of Kota Kinabalu area suggests that 18% of the area can be categorised as Very Low Hazard, 26% as Low Hazard, 30% as Medium Hazard, 15% as High Hazard and 11% as Very High Hazard. Whereas, in terms of landslide risks, the LRM indicates that 22% of the area is in Very Low Risk zone, 16% in Low Risk zone, 24% in Medium Risk zone, 18% in High Risk zone and 20% in Very High Risk zone. Areas with low degree of landslides hazard does not mean have the low risk to experience landslides, and vice-verca. Degree of "hazards" refers to the probability that a particular danger (threat) occurs within a given period of time (IUGS, 1997), whereas degree of "risk" refers to the measure of the probability and severity of an adverse effect to life, health, property, and/or the environment. Quantitatively, Risk = f (Hazard x Potential Worth of Loss). This is commonly expressed as "Probability of an adverse event times the consequences of that event" (IUGS, 1997). Therefore it is very important for both LHM and LRM to be produced when conducting a LRA in an area. This study also shows the ability of GIS technique in handling semi-quantitative data in spatial LRA research as powerful integrated tools. It is hoped that this research will be pioneering and contribute significantly in the development of LRA research in Malaysia.

Paper P7

Pencirian geomekanik jasad batuan metamorf Formasi Bukit Kenny dengan tumpuan khusus terhadap pencirian geseran satah ketakselanjaran

Rafeeqa A. Rashid*, N.Nurul Nadiah N.Ramli, Siti Noor Aisyah Idris & Ghani Rafek A.

Program Geologi, Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Alamat Emel: rafeeqarashid@yahoo.com

Kawasan kajian yang menganjur daripada Putrajaya iaitu di Precint 9 dan Precint 5 hingga ke Shah Alam iaitu di Bandar Saujana Utama dialasi batuan Formasi Bukit Kenny yang terdiri daripada batuan kuarzit, filit dengan kekanta syis amfibolit. Kawasan kajian di Precint 9 merupakan sesuatu tapak di mana terdapat kekanta syis amfibolit dalam kuarzit berbutir halus. Tapak kajian di Precint 5 adalah cerun potongan berhampiran dengan Pusat Konvensyen Antarabagsa Putrajaya (PICC) manakala di bandar Saujana Utama merupa kawasan perumahan yang sedang dalam pembinaan. Pengelasan jasad batuan menggunakan Sistem Pengelasan Geomekanik Bieniawski (1979) yang menggabunkan hasil ujian geomekanik seperti ujian kekuatan beban titik dan kekuatan mampatan sepaksi dengan hasil survei ketakselanjaran untuk pencirian parameter dilaksanakan di ketiga-tiga tapak. Bagi batuan syis yang bergred luluhawa I dan II serta kuarzit yang bergred luluhawa I, ia dikelaskan kepada jasad batuan yang baik iaitu kelas II dengan kejelekitan jasad batuan bernilai 300-400kPa dan sudut geseran jasad batuan bernilai 35°-45°. Bagi batuan syis gred III serta kuarzit yang bergred luluhawa II dan III, ia dikelaskan kepada jasad batuan yang sederhana baik iaitu kelas III dimana kejelekitan jasad batuan ialah 200-300kPa dan sudut geseran adalah 25°-35°. Sudut geseran permukaan satah ketakselanjaran yang digunakan di dalam analisis kinematik adalah dapatan daripada ujian kemiringan yang menggambarkan sudut geseran permukaan ketakselanjaran yang sebenar di lapangan. Bagi batuan syis dengan nilai pekali kekasaran kekar (JRC) 8-10 nilainya adalah 43° dan untuk JRC 10-12 adalah 55°. Bagi batuan kuarzit dengan JRC 4-6 nilainya adalah 59°, 6-8 adalah 42°, 8-10 adalah 59° dan 14-16 adalah 73°. Perkadaran jasad batuan (RMR_{hatie}) boleh digunakan untuk memberi nilai kuntitatif dalam pengenalpastian kesesuaian jasad batuan dalam geologi kejuruteraan terutamanya dalam pembinaan dan penentuan tapak cerun potangan batuan yang perlu diberi perhatian khusus untuk penebatan kemungkinan kegagalan secara lebih kuantitatif. Sudut geseran permukaan ketakselanjaran dipengaruhi oleh nilai pekali kekasaran kekar (JRC). Semakin tinggi JRC, semakin tinggi nilai sudut geseran permukaan ketakselanjaran dan semakin sukar untuk kegagalan berlaku. Maka, analisis kinematik seharusnya menggunakan sudut geseran yang sebenar di lapangan kerana ianya adalah lebih jitu berbanding nilai anggaran yang biasa digunakan.

Pengaruh amang terhadap sifat geoteknik tanah baki metasedimen dan basalt

Z.A. RAHMAN, S.N.S. ZULKAFLI* & W. Z. W. YAACOB

Program Geologi, Pusat pengajian Sains Sekitaran & Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Alamat emel: zarah1970@ukm.my

Amang adalah sisa lombong daripada proses pemisahan fraksi yang bernilai daripada pemprosesan bijih timah.Pencemaran amang terhadap sekitaran menyebabkan hakisan tanah dan fenomena saliran lombong berasid. Kehadiran amang bukan sahaja mencemarkan kualiti air malah turut mempengaruhi sifat-sifat tanah.

Kajian ini bertujuan untuk menentukan kesan pencemaran amang ke atas sifat-sifat geoteknik tanah baki metasedimen di Sungai Lembing dan basalt di Kuantan. Perubahan kekuatan tanah diperhatikan terhadap peratus penambahan amang. Sampel tercemar disediakan dengan mencampurkan amang pada kadar 5%, 10% dan 20% terhadap berat kering tanah. Perbandingan juga dilakukan bagi melihat kesan amang terhadap sifat-sifat geoteknik tanah baki basalt di sekitar Kuantan. Penentuan asas sifat tanah yang dikaji meliputi analisis saiz butiran dan tekstur tanah, ujian spesifik graviti, pembelauan sinar-x (XRD), pH tanah dan kandungan air tanah segar. Manakala analisis geoteknik yang diperhatikan adalah had-had Atterberg, ujian pemadatan, konduktiviti hidraulik dan kekuatan tiga paksi (Ujian Tiga Paksi Tak Tersalir Tak Terkukuh, UU).

Berdasarkan analisis saiz butiran pula telah menunjukkan sampel tanah metasedimen mempunyai nisbah 42.60% lempung, 32.19% lodak dan 25.21% pasir manakala sampel tanah basalt terdiri daripada 21.66% lempung, 41.45% lodak dan 36.89% pasir. Hasil analisis XRD menunjukkan sampel tanah baki metasedimen mengandungi mineral kuarza, kaolinit dan muskovit manakala sampel basalt mengandungi mineral hematit, gibsit dan geotit. Nilai spesifik graviti bagi sampel metasedimen adalah 2.67 manakala sampel basalt adalah 2.73. Nilai pH bagi sampel metasedimen adalah 3.88 manakala sampel basalt adalah 3.49. Kandungan air bagi tanah baki metasedimen adalah 22.2% manakala basalt adalah 33.8%.

Hasil analisis menunjukkan nilai-nilai had-had Atterberg bagi had cecair, W_L dan had plastik , W_p telah menyusut dengan akibat daripada kesan penambahan amang. Julat nilai W_L adalah 50% hingga 55.5% bagi tanah metasedimen dan 48.2% hingga 64.1% bagi tanah basalt. Sementara nilai W_p bagi tanah metasedimen adalah 19.08% hingga 29.57% dan julat 24.17% hingga 34.01% bagi tanah basalt. Pertambahan amang walaubagaimanapun telah menyusutkan nilai-nilai ketumpatan kering, $\rho_{\rm dry\,max}$ dan meningkatkan kandungan air optimum tanah, W_{opt} Julat nilai bagi $\rho_{\rm dry\,max}$ bagi tanah metasedimen adalah 1.65 gcm⁻³ dan 1.55 gsm⁻³ manakala peningkatan W_{opt} adalah 14.9% ke 18.3%. Sementara itu, julat $\rho_{dry\,max}$ adalah antara 1.69 gcm⁻³ dan 1.52gcm⁻³ tanah basalt dan julat W_{opt} adalah antara julat 15% - 25.36% .Kadar hidraulik konduktiviti meningkat dengan pola penambahan amang pada julat nilai antara 14.49 cmjam⁻¹ dan 23.81 cmjam⁻¹ bagi tanah metasedimen dan antara 6.85 cmjam⁻¹ dan 26.32cmjam⁻¹ bagi tanah basalt. Ujian tiga paksi menunjukkan nilai kekuatan ricih tanah, C_u menurun dengan pertambahan peratusan amang dalam tanah. Tanah metasedimen menunjukkan bahawa sifat-sifat geoteknik telah mengalami perubahan kesan daripada pencemaran amang dalam tanah asalan metasedimen dan basalt.

Analisis pengkuantitatifan gred luluhawa bahan batuan granit dengan ujian tukul Schmidt: Contoh kajian di Malaysia

Nurul Baizura Mohd Yunus*, Abdul Ghani Rafek**, Goh, T. L. & Mohd Hariri Arifin

Program Geologi, Pusat Pengajian Sains Sekitaran dan Sumber Alam Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Alamat Emel: nurulbaizura@gmail.com

Ujian pantulan tukul Schmidt merupakan satu ujian indeks yang diubahsuai daripada ujian in – situ konkrit yang telah tersebar luas penggunaannya dalam bidang mekanik batuan untuk penganggaran kekuatan mampatan sepaksi bahan batuan. Dalam kajian ini, ujian ini digunakan untuk mendapatkan secara kuantitatif kekuatan pantulan batuan dengan gred luluhawa berbeza bagi bahan batuan granit. Lokasi kajian ialah di Kuari Kajang Rock dan Lebuhraya SILK di Kajang, Selangor, D. E., jalan Pos Selim – Kg. Raja, Perak – Pahang, dan Kuari JKR Bukit Penggorak di Kuantan, Pahang. Ujian ini telah dijalankan ke atas 18 cerun batuan melibatkan 3119 bacaan pada dinding cerun dan 4955 bacaan pada sampel batuan di makmal. Berdasarkan aras keyakinan 95%, nilai min bacaan pantulan tukul Schmidt bagi batuan granit segar (Gred I) ialah 54 (±0.16) dengan sisihan piawai 5.33, batuan granit terluluhawa sedikit (Gred II) 37 (±0.21) dengan sisihan piawai 5.54 dan batuan granit terluluhawa sederhana (Gred III) 17 (±0.31) dengan sisihan piawai 4.76. Nilai – nilai ini mewakili penurunan 31.5% atau lebih kurang $\frac{1}{3}$ kekuatan batuan granit sedikit terluluhawa berbanding batuan granit segar serta 68.5% bagi batuan terluluhawa sederhana atau $\frac{2}{3}$ berbanding dengan batuan granit segar. Hasil keputusan ini mewakili kaedah kuantifikasi dalam penggredan tahap luluhawa bahan batuan granit berdasarkan nilai pantulan tukul Schmidt.

The Schmidt Rebound Hammer is an index testing apparatus derived from the non – destructive in–situ testing of concrete that has widespread application in rock mechanics for the estimation of uniaxial compressive strength (UCS) of rock materials. In this study, this test has been employed for the strength quantification of different weathering grades of granitic rock material. The study sites were the Kajang Rock Quarry and SILK Highway in Kajang, Selangor, D.E., Pos Selim – Kg. Raja road, Perak – Pahang, and Bukit Penggorak JKR Quarry in Kuantan, Pahang. The tests were conducted on eighteen slopes consisting of 3119 data on the slope walls and 4955 data on lab samples. Calculated at 95% confidence level, the mean Schmidt Hammer rebound values for fresh granites (Grade I) was 54 (\pm 0.16) with the standard deviation of 5.33, slightly weathered granites (Grade II) was 37 (\pm 0.21) with the standard deviation of 5.54 and moderately weathered granites (Grade III) as 17 (\pm 0.31) with the standard deviation of 4.76. These values represent a 31.5% or about $\frac{1}{3}$ decrease in the rock strength of the slightly weathered granites when compared to fresh granites and 68.5% for moderately weathered granites or $\frac{2}{3}$ with respect to fresh granites. These results represent a means of quantification of granitic rock material weathering grades based on their Schmidt Hammer rebound values.

Paper P10

The effect of soil heterogeneities on the movement of DNAPL using small-scale geotechnical centrifuge

Wan Zuhairi W.Y.^{1*}, Abdul Rahim S.¹, Abdul Ghani Rafek¹, Zahari I² & Muchlis¹

¹ Geology Programme, School of Environmental and Natural Resources Sciences ² School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Email Address: yaacobzw@ukm.my

A mini 0.6 m diameter beam centrifuge has been fabricated at the Universiti Kebangsaan Malaysia in Bangi, Selangor. The centrifuge took almost one year to build. The centrifuge was designed to allow centrifuge testing of soil package for up to 5 kg of weight with maximum rotational speed of 500 RPM and can accelerate for up to 140 in units of times gravity (xg). The dimension of soil package is 10 cm (width) x 28 cm (length) x 19.5 cm (height). This centrifuge is equipped with coloured digital video camera and high speed stroboscope. The recorded of moving images can be stored directly into the computer. Real time video images can also be observed on the LCD monitor installed in the operation room. The centrifuge is controlled using a control box with various buttons and digital displays such as on/off button, RPM controller with digital display. As a safety precaution, the body of the centrifuge is made using double layers 5mm steel with 5cm absorbing membrane as sound barrier. It has a vibration auto switch-off that will automatically stop if the vibration is exceeded the permissible vibration limit. The paper will highlight some early results of the test carried out in this new centrifuge. The test was carried out to investigate the effect of soil heterogeneities on the plume flow pattern of contaminant (DNAPL) in soil. The strong box was filled with different soils to simulate various soil heterogeneities such as horizontal and dipping bedding planes, lenses of clay, saturated-unsaturated zone, and different grain sizes. Tetrachloroethylene (PCE) dyed with Sudan V was introduced as a contaminant on top of the strong box. The test was carried out at different G force, i.e. 20, 40 and 60 g. The behaviour of DNAPL movements in geotechnical centrifuge will be compared with 1-g experiment conducted in a small mini tank in the laboratory.

Microstructural characteristics of some alkali-aggregate reactive granites of Peninsular Malaysia

NG T.F.

Department of Geology, University of Malaya, 50603 Kuala Lumpur Email Address: thamfatt@gmail.com

In Peninsular Malaysia, granite is the most important source of construction aggregates, accounted for over 75% of the total tonnage of aggregates produced. Granite aggregates is particularly important in the more developed regions of Selangor, Kuala Lumpur, Penang and Johor Bahru, where almost all aggregates are produced from granitic rocks.

Granite aggregates are the preferred material used in concrete in Peninsular Malaysia. They are generally considered as non alkali-aggregate reactive (Chow & Abdul Majid Sahat, 1990; Yeap, 1992). Alkali-aggregate reaction (AAR) is a chemical reaction where alkali cations in solution (Na^+ , K^+) react with reactive aggregates in the concrete. Through this reaction, amorphous phases are formed, which imbibes water and swells. It causes expansion, cracking and weakening of the concrete structure and potentially leading to a collapse.

There are three types of AAR, which are associated with the type of alkali-reactive aggregates. Alkali-silica reaction (ASR), which was identified first by Staton (1940) and Staton *et al.* (1942), involves the reaction of disordered forms of silica minerals in aggregates (Hobbs, 1990). Reactive silica aggregates are opal, chalcedony, volcanic glass, cristobalite, tridymite as well as cryptocrystalline, microcrystalline and strained quartz. Alkali-phyllosilicate reaction is believed to be due to the occurrence of swelling phyllosilicate minerals (Gillott *et al.*, 1973; Gillott, 1975). Alkali-carbonate reaction (ACR) which has been reported with some dolomitic limestones and carbonates with siliceous or argillaceous components (Swenson & Gillott, 1960; López-Buendía *et al.*, 2006) will not be considered in this paper.

Alkali reactive minerals can occur naturally in granite aggregates in several ways. Primary minerals of the granite and associated rocks found in the quarries are generally devoid of reactive minerals, although minor microcrystalline quartz are present in mymerkite in some granites and as individual grains in some fine-grained microgranite and aplite. Granites near the contact with the country rocks often have metasedimentary enclaves, which contain phyllosilicates and microcrystalline quartz. However, in general these enclaves only constitute a very small proportion of the rock material. Granitic rocks can contain reactive secondary minerals such as opal and chalcedony which infill discontinuities. Field studies of granite quarries show that such mineral veins are rare in Peninsular Malaysia. Chalcedony has been observed in only one quarry and it has also reported in Selangor by Yeap (1992). Faulting has generated a diverse variety of deformed granites and caused severe straining and grain size reduction of the quartz grains in the granite (Ng, 1994). The effect of fault deformation on ASR of granites in Peninsular Malaysia has been discussed by Ng & Yeap (2007), and elsewhere (e.g. Kerrick & Hooton, 1992; Wigum, 1995). Lastly, reactive secondary minerals can also form as a result of mineralisation and alteration of granites.

Tests available for the detection of potentially reactive aggregates have been reviewed by Wigum *et al.* (1997). Petrographic examination is a useful and fast method for the identification of potentially deleterious minerals in the aggregates, while the accelerated mortar bar expansion test (ASTM C1260-94) measures the expansion of three mortar bars in immersed in 1N NaOH at 80 °C. Average expansions of more than 0.20% at 16 days after casting are indicative of potentially deleterious expansion, while expansions between 0.10% and 0.20% have marginal behaviour. According to Oberholster & Davies (1986), samples with expansion greater than 0.11% at 12 days is considered as deleterious.

In this study, more than 150 samples of granite and associated rocks were collected from quarries and rock slopes. Thin sections were prepared for petrographic examination. After the petrographic examination, sixteen representative samples collected from granite quarries were subjected to expansion test. Two samples are typical granite that are not deformed and has minimal alteration (sericitisation of plagioclase and chloritisation of biotite). The other twelve samples contain potentially deleterious minerals, all of which experienced marginal to deleterious expansion in the test (0.1% - 0.28%). This study will concentrate on the petrographic microstructures of these alkali-aggregate reactive granites.

Of all the minerals identified in this study, chalcedony is considered as most reactive. Chalcedony infills irregular spaces in the cataclastic granite collected from a quarry in central Selangor. The chalcedony has fibrous habit and forms radiating masses of about 100 µm in diameter, between secondary pyrite and mica grains.

Faulting has resulted in the formation of a wide variety of fault rocks in the granite, ranging from fault gouge and breccias, to cataclasites and mylonites (Ng, 1994). Being incohesive, fault gouge and breccias seldom end up in the production of aggregates. Strained quartz and microcrystalline quartz are the main potentially deleterious mineral in cataclastic and mylonitic granites. Quartz with undulatory extinction is omnipresent in all undeformed and deformed granite samples. However, not all quartz with undulatory extinction is indicative of deleterious behaviour (West, 1991). It is generally accepted that quartz with undulatory extinction angle larger than 15°, and quartz with deformation bands and lamellae is considered as strained quartz. All quartz clasts in the cataclastic granites are strained, while in the mylonites, relict quartz clasts, which often form ribbon texture also show large undulatory extinction angle, and less frequently, deformation bands and lamellae.

With progressive deformation quartz clasts in the mylonites are polygonised and recrystallised. The formation of polygonal subgrains often progresses inwards from the clast boundaries. The subgrains are equidimensional to weakly elongated, the latter are aligned parallel to the mylonitic foliation. The subgrains are mainly $20 \mu m$ to $30 \mu m$ in diameter.

Deformation of granites results in grain size reduction. Microcrystalline (<60 µm) quartz occurs in cataclastic and mylonitic granites. In the cataclasites, microcrystalline quartz is produced by abrasive wear, and it is consisting of angular quartz clasts in

PERTEMUAN PERSATUAN (MEETINGS OF THE SOCIETY)

the matrix. In the mylonites, the microcrystalline quartz is consisting of quartz subgrains and neoblasts, formed as a result of recovery of highly strained quartz. The neoblasts are formed by subgrain rotation mechanism and have similar shape and size as the subgrains. The microcrystalline quartz is often concentrated in quartz-rich bands that form the fabric element of the mylonite.

Microcrystalline quartz is also found in silicified cataclastic granites, which also experienced minor chloritisation and sericitisation. The silicified cataclastic granites contain abundant secondary quartz in the matrix and the quartz also forms veinlets. Although, quartz can occupy up to 75% of the silicified rocks, generally the microcrystalline fraction is only about 25%.

Microcrystalline quartz is also found in strongly sericitised granite, where all the plagioclase has been completely altered to sericite. In some of the sericitised plagioclase, very fine irregularly-shaped quartz grains are observed, probably precipitate from the excess silica produced during the alteration process. One sericitised granite sample shows the largest expansion (0.28%) in the mortar bar test. Due to the high sericite content (~35%), it is unclear whether the expansion is caused by ASR or alkaliphyllosilicate reaction or both.

The microstructural characteristic of some alkali-aggregate reactive granite has been described. Granitic rocks having similar characteristics are potentially alkali reactive and should be verified by accelerated mortar bar test. Although, alkali reactive rocks are present in some quarries in Peninsular Malaysia, generally these rocks will not pose serious problems in the production of concrete aggregates as they constitute only a small proportion of the extracted rocks.

References

- ASTM (American Society for Testing Materials), 1994. Standard test method for potential alkali reactivity of aggregates (mortar-bar method). ASTM Designation C1260-94.
- Chow, W.S. and Abdul Majit Sahat, 1990. Potential alkali-silica reactivity of tuffaceous rocks in the Pengerang area, Johor. Bull. Geol. Soc. Malaysia, 26:97-108.
- Gillot, J.E., Duncan, M.A.G. & Swenson, E.G., 1973. Alkali-aggregate reaction in Nova Scotia. IV. Characters of the reaction. Cement and Concrete Research, 3, 521-535.
- Gillott, J.E., 1975. Alkali-aggregate reactions in concrete. Engineering Geology, 9, 303-326.
- Gogte, B.S., 1973. An evaluation of some common Indian rocks with special reference to alkali-aggregate reactions. Engineering Geol., 7:135-153. Hobbs, D.W., 1990. Alkali-silica reaction. In: Pike, D.C. (ed), Standards for Aggregates. Ellis Horwood, New York, pp. 91-108.
- Kerrick, D.M. & Hooton, R.D., 1992. ASR of concrete aggregate quarried from a fault zone: results and petrographic interpretation of accelerated mortar bar test. Cement Concrete Res., 22, 949-960.
- López-Buendía, A.M., Climent V. & Verdú, P., 2006. Lithological influence of aggregate in the alkali-carbonate reaction. Cement and Concrete Research 36, 1490–1500.
- Ng, T.F., 1994. Microstructures of the deformed granites of eastern Kuala Lumpur Implications for mechanisms and temperatures of deformation. Bull. Geol. Soc. Malaysia, 35:47-59.
- Ng, T.F. & Yeap, E.B., 2007. Potential alkali-silica reaction in aggregate of deformed granite. Geol. Soc. Malaysia Bull. 53:81-88.
- Oberholster, R.E. and Davies, G., 1986. An accelerated method for testing the potential alkali reactivity of siliceous aggregates. Cement and Concrete Res., 16:181-189.
- Staton, D.E., 1940. The expansion of concrete through reaction between cement and aggregate. Proc. American Soc. Civil Engineers, Vol. 66, pp. 1781.
- Stanton, T.E., Porter, O.J., Meder, L.C. and Nicol, A., 1942. Californian experience with the expansion of concrete through reaction between cement and aggregate. American Concrete Institute Proceedings, vol 30, p. 209.
- Swenson, E.D. & Gillott, J.E., 1960. Characteristics of Kingston carbonate rock reaction, Highw. Res. Board, Bull. 275, 18-31.
- West, G. 1991. A note on undulatory extinction of quartz in granite. Quarterly Journal of Engineering Geology, 24, 159-165.
- Wigum, B.J., 1995. Examination of microstructural features of Norwegian cataclastic rocks and their use for predicting alkali-reactivity in concrete. Engineering Geology, 40, 195-214.
- Yeap, E.B., 1992. The mineralogical and petrological factors in the alkali-silica reactions in concrete. Bull. Geol. Soc. Malaysia, 31:1-15.

Study of water quality and heavy metals in soil & water of ex-mining area Bestari Jaya, Peninsular Malaysia

Muhammad Aqeel Ashraf^{1*}, Mohd. Jamil Maah¹ & Ismail Yusuff²

¹Department of Chemistry, University of Malaya, 50603 Kuala Lumpur ²Department of Geology, University of Malaya, 50603 Kuala Lumpur *Email Address: chemaqeel@gmail.com

Tin mining was one of the leading mining industries in Malaysia in 19th century before the world tin crisis in 1985. Most Malaysian tin comes from two states Perak (63%) and Selangor (22%) and is richest in the Kinta, Batang Padang, Bestari Jaya (Batang Berjuntai) and Klang Valley. These mining activities have resulted in about 113,700 hectars of tin tailings throughout the peninsula that created numerous environmental problems such as threat to natural reserves due to landscape changes, damage to natural drainage, pollution and destruction of natural habitats The present study was carried out in old tin mining area Bestari Jaya (Batang Berjuntai old name), Kuala Selangor District in Selangor state. The purpose of this study is to get the ground information about environmental and contamination characteristics and also planning for future work. The mined out catchment covers an area of 323.74 hectars. Initially 92.61 hectors of downstream catchment were investigated which includes two mined out water ponds. These ponds flow downstream to Ayer Hitam River that ultimately ends up with River Selangor, 5 km upstream of Batang Berjunti Water Treatment Plants SSP1 and SSP2 which are major water distributors to federal territory (Kuala Lumpur and Putrajaya) and Selangor state as well. Samples of soil and water were taken separately from fifteen locations of downstream catchment using Global Positioning System. In preliminary studies physio-chemical parameters and concentration of heavy metals Pb²⁺, Zn²⁺, Ni²⁺, Co²⁺, As³⁺, Cu²⁺, Fe²⁺, Mn²⁺, Sn²⁺ were anlyzed. The metals were extracted by nitric acid and hydrogen peroxide in a closed vessel microwave digestion system and analysed by using atomic absorption spectroscopy. The method was validated by using standard reference material (NIST SRM 4354, 1643e) and results were compared with interim national water quality standards for Malaysia and found that most of physio-chemical parameters and metals concentration exceeds the permissible limits set by interim national water quality standards for Malaysia. So it is concluded that Bestari Jaya ex-mining catchment has a high pollution potential due to mining activities and Ayer Hitam River, recipient of catchment water is a highly polluted river. Therefore extensive research needs to be carried out in order to evaluate possible environmental risk factors in the area. Different environmental aspects have also discussed in this paper for the future research during this project.

Paper P13

Physical properties of Tasek Bera sediments as indicators of environmental change

M.R. GHARIBREZA^{1,2*}, RAJ, J.K.¹, ISMAIL YUSOFF¹, M. ZAINUDIN³ & W. ZAKARIA⁴

¹Department of Geology, University of Malaya, 50603 Kuala Lumpur ²Soil Conservation & Watershed Management Research Institute, Tehran, Iran ³Department of Geography, Sultan Idris Education University ⁴Malaysian Nuclear Agency, (Nuclear Malaysia) *Email Address: Gharibreza@perdana.um.edu.my

Physical properties of sediments in the open-water areas of Tasek Bera were studied to investigate environmental changes within its catchment area. Five sediment cores extending into the soft sediment and underlying weathered bedrock were collected for investigation of their physical properties; the 1st and 2nd cores collected at the two main sediment entry points, and the rest from the deepest points of open water.

The sediments of the cores can be mostly classified as organic soils or peat with clayey textures in view of their composition, i.e. 93% clay, 5% silt and 2% very fine sand. There is a general increase in bulk density but a general decrease in porosity down the sediment columns. On the basis of the bulk density and porosity, the sediment columns can be separated into two distinct sections that can be correlated with the sampling locations in the open water areas of Tasek Bera. The upper layers of the sediment columns, with the lowest bulk density and highest porosity, are some 18cm thick at the entry points or river mouths (Cores 1 and 2) and some 25cm thick in the deepest part of Tasek Bera. These upper layers are organic-rich clays to peats with a maximum 62% organic content, whilst the porosity in saturated sediments is some 91 to 97%. Maximum bulk densities for these sediments have been determined at 2.06, 1.86, 1.76, 1.75 and 1.45 g/cm³, for samples from the 1st, 2nd, 5th, 6th and 4th cores, respectively.

Physical properties of sediments in the open water areas of Tasek Bera indicate that environmental changes have occurred within the catchment area. Field observations and a GIS study show that these environmental changes, marked by an increase in organic content in the sediments, are due to the clearing of forested areas and the planting of agricultural crops (FELDA) from the year 1970. The environmental changes are also shown by the dramatic decrease of bulk density and increase of porosity within the sediment columns. From the starting date of environmental change and the thickness of the upper layers, approximate sedimentation rates of 5.0, 4.3, 3.0, 6.3, and 4.7, mm/yr have been obtained for the 1st, 2nd, 4th, 5th, and 6th, core samples respectively.

Heavy metals adsorption by residual soils of rhyolite, andesite and basalt from Pahang, Malaysia

CHONG Y. L.* & WAN ZUHAIRI WAN YAACOB

Geology Programme, School of Environmental and Natural Resources Sciences
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
*Email Address: liewliew82@yahoo.com

The adsorption tests of heavy metals were carried out on rhyolite residual soil from Lancang, residual andesite from Kuari Kampung Awah and residual basaltic soil from Kuantan, Pahang. Physical and chemical characteristics of the soil that would probably affect the levels of adsorption were firstly characterized. Grain size distribution, Atterberg limits, compaction, permeability, pH, compositions of organic content, capacity exchange cation (CEC) and specific surface area (SSA) were conducted. Physicochemical properties of soils showed that andesitic soil has high clay content, low pH value, high organic matter content, high capacity exchange cation and high specific surface area. Heavy metals used in the adsorption study were Pb, Cu, Ni, Zn, Co and Cd. The sorption experiment was conducted using two main experiments namely high speed centrifuge mini column test and batch adsorption test. These tests were conducted to study the heavy metals adsorption by different types of soils. Heavy metals were analyzed using Flame Atomic Absorption Spectrophotometer (AAS). The centrifuge mini column data were presented using breakthrough curves. The results showed that andesitic soil has the highest retention capability on heavy metals compared to other residual soils. The equilibrium adsorption data from batch test were fitted to linear. Langmuir and Freundlich isotherm models. All three types of soil were found to adsorb higher amount of Pb compared to other heavy metals with the sorption selectivity of Pb > Cu > Zn > Co > Cd > Ni. Both tests discovered that andesite residual soil adsorbed highest heavy metals compared to rhyolite and basalt with the ranking for sorption as; residual andesite soil > residual basalt soil > residual rhyolite soil. The results of the study demonstrated that the residual amdesite soil has a better potential and a good candidate to be used as an effective, cheap, environmental friendly adsorbent for heavy metals.

Paper P16

Flux of nutrients and heavy metals to Tasik Chini through erosion from Sungai Melai sub-catchment, Chini, Pahang

Sahibin Abd. Rahim*, Wan Mohd Razi Idris, Tukimat Lihan, Zulfahmi Ali Rahman, Muhd Barzani Gasim, Mohd Ekhwan Toriman, Azman Hashim & Norhadilla Hadib

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Email Address: haiyan@ukm.my

This study was conducted to determine the flux of nutrients and heavy metals from Sg. Melai catchments to Lake Chini through erosion. For this purpose several soil physical properties such as particle size, organic content, true and bulk density, clay dispersion coefficient, aggregate stability and soil hydraulic conductivity was determined. Chemical properties determined were pH, electrical conductivity, available nutrients, dissolved nutrients and heavy metals. Indicators of erosion determined in water were total suspended solids, dissolved nutrients and heavy metals. It was found that the texture of the soil in the study area is clay, silty clay, clayey loam and sandy silt loam. Organic matter content is in the range of 3.40 to 9.92%, while the percentage of clay dispersion is between 3.20 to 15.83%. Rainfall erosivity value was 1658.7 Mg mm ha⁻¹ h⁻¹. Soil erodibility ranged from 0.06 to 0.26 ton/J and the slope factor, LS range from 7.63 to 18.33. Predicted rate of soil loss was low at 18.93 tonha⁻¹ yr⁻¹ to very low (0.0028 tan ha⁻¹ yr⁻¹). Flow of nutrients and heavy metals into the lake through erosion from Sg. Melai catchment was low based on the low rates of erosion.

Petroleum source potential of Tertiary coals of Western Pinangah, Sabah Malaysia

Mohd Harith Azhar*, Wan Hasiah Abdullah, Ralph L. Kugler and Mustaffa Kamal Shuib

Department of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur *Email Address: duoeffect@yahoo.com.my

The Tanjong Formation which underly the Western Pinangah area is of Upper Miocene age, based on assemblages of both pelagic and calcareous benthonic foraminifera (Collenete, 1965). The majority of foraminiferal samples were collected from the Pinangah River and northern side of the Maliau Basin (Collenete, 1965). An investigation on the coals of the Tanjong Formation in western Pinangah, an area of 45 km² in central Sabah, was undertaken to evaluate their petroleum-generating potential. The amount and quality of the organic matter was determined using a SRA (Source Rock Analyzer) run in TPH/TOC (Total Petroleum Hydrocarbon/Total Organic Carbon) mode. The parameters derived from the SRA are equivalent to that produced by Rock-Eval techniques. In total, fourteen coal samples were analyzed. The TOC (Total Organic Carbon) of the coal samples ranges from 51.2 to 72.5 wt%. The Tmax (temperature where the maximum amount of hydrocarbons are artificially generated during pyrolysis) varies from 418°C to 440°C. This is equivalent to a calculated vitrinite reflectance equivalent (VRE) of 0.36 to 0.76% VRE, based on the Tmax-VRE relationship described by Jarvie *et al.* (2001). These low values suggest that the coals are thermally immature to early mature for hydrocarbon generation. The HI (Hydrogen Index) of the coals ranges from 203 to 463 mgHC/gTOC. These values are usually associated with petroleum source rocks that could potentially generate a mixture of oil and gas, or mainly oil. When the HI and Tmax data were plotted in a van Krevelen diagram, most of the data points fall close to the Type II and Type III kerogen line. All of the data above indicate that the Western Pinangah coals are of favorable quality and quantity in terms of petroleum generating potential.

References

Collenete, P., 1965. The Geology and Mineral Resources of the Pensiangan and Upper Kinabatangan Area Sabah, Malaysia. Vincent Kiew Fah San, Government Printer.

Jarvie, D. M., Claxton, B. L., Henk, F., & Breyer, J. T., 2001. Oil and shale gas from the Barnett Shale, Fort Worth Basin, Texas. AAPG Bulletin, 85, A100.

Paper P18

The Upper Eocene to Upper Oligocene Ransi Conglomerate of the Tatau Formation in the Tatau-Bintulu area, Sarawak

Wong Y.L.* & Lee C.P.

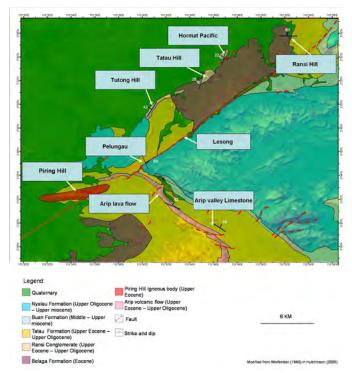
Geology Department, University of Malaya, 50603 Kuala Lumpur Email Address: wongyienlim@yahoo.com

A recent study in the Tatau-Bintulu area indicates that the Ransi Conglomerate which was originally date as Upper Miocene to Pliocene (Kamaludin Hassan, 2004) is part of the Upper Eocene to Upper Oligocene Tatau Formation. This finding is inconsistent with that of Liechti, et.al (1960) who proposed that is was equivalent to the Middle to Upper Miocene Begrih Formation while Ismail (2000) proposed that it was equivalent to the Upper Miocene Balingian Formation.

This paper discusses the paleo-environment, stratigraphy and its relationship to its adjacent formations. These were used to reconstruct the geological history of the Tatau area. The Ransi Conglomerate is placed at the base of the Tatau formation. It is made up of mostly thick bedded conglomerate and pebbly sandstone interbedded with thin shale horizons. The rounded to sub-rounded conglomerate clasts with mainly soft sandstone clasts and minor shale pebbles in the Pelungau area were up to cobble size while the fine grain conglomerate in Tutong Hill, Tatau Horst and Ransi Hill range from pebble to granule size and are mainly composed of angular to sub-angular clasts of chert, vein quartz pebbles and metamorphic fragments. Most of the sandy beds are quartzitic and light grey in colour but a very thick black carbonaceous horizon was found at the base of the light coloured horizon in the Hormat Pacific Quarry in the northeastern part of the Tatau Horst. Cross bedding is common with the mostly graded-bedded sandstone bed indicating that these are channel sands.

The discovery of significant burrowing in many Ransi Conglomeratesections together with marine microfossils suggest that it was deposited by channels into a shallow marine to lower coastal plain environment. The source of the Ransi Conglomerate was largely from the radiolarian rich chert and metamorphic rock bearing older Rajang Group located to the south as indicated by paleocurrent directions. The present of volcanic clasts suggest active volcanism in the hinterland during the deposition of the Ransi Conglomerate. Some of the volcanic clasts were most probably from the Arip Volcanic and also Bukit Piring subvolcanic exposures located to the southward of the basin.

PERTEMUAN PERSATUAN (MEETINGS OF THE SOCIETY)


References

Hutchison, C. S., 2005. Geology of North-west Borneo Sarawak, Brunei and Sabah. Elsevier B. V., Netherlands. 421 p.

Ismail Che Mat Zin, Platform one volume 2: Stratigraphic position of Rangsi Conglomerate in Sarawak. July-December 2000 (accessed September 2, 2008). University Teknology Petronas. http://www.utp.edu.my/publications/platform/Platform%20v1n2.pdf

Kamaludin Hassan, 2004. Cenozoic. In: Lee, C. P., Mohd. Shafeea Leman, Kamaludin Hassan, Bohari Md. Nasib & Rashidah Karim, Stratigraphic Lexicon of Malaysia, Geological Society of Malyasia. pp.124-125.

Liechti, P., Roe, F. W. and Haile, N. S., 1960. The geology of Sarawak, Brunei and the western part of North Borneo. Geol. Suv. Bull., 3 vol.1, 360 p.

Figure 1: Geological map (modified from Wolfenden, 1960 in Hutchison, 2005)

Paper P19

A GIS -based method to evaluate factors controlling landslides along the East-West Highway (Gerik – Jeli), Malaysia

TAREQ H. MEZUGHI, JUHARI MAT AKHIR, ABDUL GHANI M .RAFEK & IBRAHIM ABDULLAH

Geology Programme, School of Environmental and Natural Resource Sciences
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
Email Address: thmezughi@yahoo.com

The present work aims to utilize remote sensing and GIS to assess the contribution of every predisposing factors on landslides to broaden our knowledge in assigning weights for those factors, in order to construct a potential landslide hazard map along the East West highway (Gerik –Jeli) area.

In order to achieve this, landslide locations map of the study area was prepared from the interpretation of aerial photographs and field surveys, and a spatial database for causative landslide factors was constructed from topographic, geological, soil and precipitation maps. Then, ten thematic maps for the factors that influence landslides occurrences have been produced from spatial data base. The lineaments map was extracted from Landsat 7 ETM+ image. DEM, slope, aspect and elevation thematic maps were calculated from the topographic database. Lithology, fault map, and bedding map were extracted from the geology database. Soil map was produced from laboratory analysis of fifteen soil samples. The rain fall zones map was prepared using data collected from three rain fall stations. These thematic maps were then overlaid with landslide locations map using ArcGIS 9.2 software, and the contribution of each causative factor to landslide was evaluated by calculating the number of pixels forming the scarps fell into the various classes of the maps of the factors. The results obtained from the analysis showed that factors acted differently and for every factor, only some of the classes were considered to have marked importance. It was found that slope ranges from 20° to 40° played a very important role in the concentration of the landslides processes. While from the eight aspect classes the landslides showed highly prevalence toward W, E, NW and SE. In the case of lineaments density, the most dominant landslide frequency was located in the lineament density ranges from 0.505 km/sq km to 1.516 km/sq km. On the other hand, the highest landslide concentration was in the drainage density of 3.505 km/sq km. Comparing the orientation of strata to the slope showed that Landslides occur when the strata has inclination in the same direction with slope direction. In conclusion, it was possible with this method to demonstrate that, for each landslide causative factor considered, only some of the classes had a high influence, whereas others had a less important influence. With the results obtained from this GIS methodology, the weights can be assigned objectively according to the importance of each factor on contributing the landsliding process.

Integrating data from remote sensing and geology for geological investigation in the eastern ends of Wadi Shati iron ore deposit

YOUNES AJAL ABULGHASEM*, JUHARI BIN MAT AKHIR, WAN FUAD WAN HASSAN, ABDUL RAHIM SAMSUDIN & BASHIR MOHAMED YOUSHAH

Geology Programme, School of Environmental and Natural Resources Sciences
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,Selangor
*Email Address: warmsnow7_7@yahoo.com

Wadi Shatti deposit is a belt of upper-Devonian sedimentary formation including iron ore bearing layers, which extend over about 160 km, in E.NE-W.SW direction, on the northern border of the Murzuk basin, at its western and eastern ends. The iron ore bearing belt is covered by more recent formations which definitively conceal the ore outcrops, French study group (Stero Jexport, 1977). The study area is located in the south west part of the Libya Extend between 27° South and 28° North Latitude and 14° 45′ to 15°45′ East - longitude covering an area of nearly 10,000 sq km. a geological map of this area based on aerial photographs has been produced in 1984 and geological detailed study for the iron ore deposit has been done in 1974. This study examines the use of Remote Sensing (RS) technology in geological to discover any probable extensions of the iron ore deposit; the Landsat Thematic Mapper (ETM+) instruments have provided information relating to specific groups of minerals, specifically the iron oxides and clays. Image processing techniques were applied such as Maximum Likelihood supervised Classification image for bands (7, 3, 1) and band ratio images (3/1, 4/3, and 5/7). XRD and XRF are highly complementary materials analysis methods which when used together greatly improve the accuracy of phase identification and quantitative analysis. Few samples has been collected form the promising new areas, XRD and XRF analysis applied on the collected samples to be compared with the result which been detected from remote sensing study. Small iron ore occurrences are found along the eastern and eastern south end of wadi -shati iron ore belt, these founding of iron deposit bodies may suggest that the iron ore extend under the sand covered area.

Paper P21

Estimation of baseflow index for the upper Langat river catchment, Selangor, Malaysia

Nor Liana Ab Razak*, Ismail Yusoff, Nur Islami Abd Rahman

Geology Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia *Email Address: anailqamar@yahoo.com

Baseflow, or groundwater runoff, is the flow component contributed to the river by groundwater. The purpose of this study is to estimate the Base Flow Index (BFI) for the upper Langat river catchment. The estimation of the index used the Ineson and Downing base flow separation method that estimated the groundwater discharge below the lower limit of the total hydrograph. The river discharge data recorded at Dengkil from 1960-2008 was used for this study. The estimated value of BFI for the upper Langat river catchment is between 0.50-0.51. The less extensive and thinner quaternary sediment cover in the upper catchment area is believed to limit the surface water and groundwater interaction.

Estimating the Baseflow Index is an important issue in hydrogeologic studies. In most cases, Baseflow Index is estimated by hydrograph separation. In hydrologic terms, hydrograph separation is the process where the storm hydrograph is separated

into baseflow components and surface runoff components. Both these compenents are crucial for efficient development and management of groundwater resources.

Although several methods have been used to estimate ground-water discharge from stream flow records, the most commonly used is the estimation by the continues and long term of discharge into the stream. In other words, it requires an extended period of recording to estimate the long-term groundwater discharge. For Malaysian river, less study has been published in Base Flow Index.

The area of Langat river catchment is 1240 km2 and the length of the river is about 200 km. It is underlain by six lithologies which are comprised Hawthornden Schist, Kajang Formation, Kenny Hill Formation, granite, Tekali Quartz Ridge and alluvium (Anis Suhaila, 2007)(Figure 1). The Completed and and consecutive daily mean streamflow records from 1960 – 2008 of a streamflow gauging station in upper Langat river

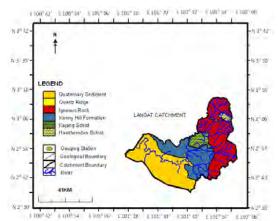


Figure 1: The map of study area and location of the gauging station.

PERTEMUAN PERSATUAN (MEETINGS OF THE SOCIETY)

catchment was choosen and the location of the station is also shown in Figure 1.

Ineson & Downing (1964) base flow separation method is approaches to separate base flow component and surface runoff (Figure 2). This method is used because it is more reliable and representing the real situation. The Base Flow Index (BFI) or reliability index, which is long-term ratio of base flow to total stream flow, can be related to the base flow response of a catchment (Nathan & McMahon, 1990).

Table 1 shows that the BFI value is between 0.50 - 0.51 because the location of stream flow gauging station is at the upper part of Langat river catchment. Furthermore, the less extensive and thinner alluvium cover along the river is believed to limit the surface water and groundwater interaction. Both these reason are generally controlled the value of BFI. By using this method, the value of BFI can be determined and this method is reliable to get the value of Base Flow Index. So, more research about this component should be extended to lower catchment of Langat River.

References

Anis Suhaila Mokhtar, 2007. Kajian Perhubungan Geologi dengan Kimia Air di Lembangan Langat, BSc. thesis (Unpubl.), University of Malaya. Ineson, J., Downing, R.A., 1964. The ground-water component of river discharge and its relationship to hydrogeology. J Inst Water Eng 18:519–541 Nathan, R.J. & McMahon, T.A., 1990. Evaluation of automated techniques for base flow and recession analysis. Water Resources Research. 26(7):1465–1473

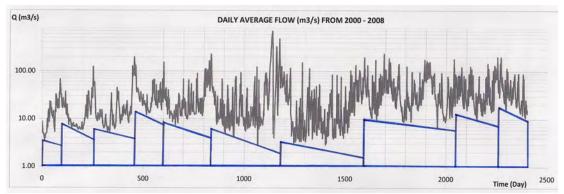


Figure 2: The Base flow separation method.

Table 1: The Base Flow Index

CATCHMEN	STATION NO	LATITUDE	LONGITUDE	AREA (KM²)	LENGTH (KM)	TIME PERIOD ANALYZED	ANNUAL RAINFALL (mm)	TOTAL STREAMFLOW (m3/year)	BASEFLOW (m3/year)	BASEFLOW INDEX (BFI)	DISCHARGE (m3/s)
Langat	2816441	E101.68343°	N02.85643°	1240	200	1960 - 2008	2375.58	4.00E+11	2.05E+11	0.51	34.7

Paper P22

Quantification of the influence of discontinuities on the compressive strength of Malaysian granite

GOH, T.L.*, GHANI RAFEK, A., BAIZURA YUNUS, N. & HARIRI ARIFFIN, M.

Geology Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Email Address: gdsbgoh@gmail.com

Geological discontinuities, weathering grade and compressive strength of rock material play a significant role in influencing the stability of both cut rock slopes as well as underground openings. In the actual scenario, the compressive strength characteristics of the rock material are influenced by both material strength as well as the presence of macro-fracture. This paper presents the results of one important aspect of a systematic research to quantify the mechanical characteristics of granite materials, which are the changes in the compressive strength of fresh as well as slightly weathered granites related to geological discontinuities. The weathering grades of rock material were determined by using Schimdt rebound hammer. The granitic rock samples were tested by uniaxial compressive strength test according to ISRM standard. From the examination on rock 167 samples after the tests, the modes of failures were classified as material failure as well as material and discontinuity failure. Statistical analysis of the results at 95% confidence level showed that the average values of uniaxial compressive strength for fresh as well as slightly weathered for material failure were 113.6 \pm 7.0 MPa and 68.9 \pm 3.6 MPa respectively. For material and discontinuity failure, the respective average values of uniaxial compressive strength for fresh and slightly weathered were 65.6 \pm 4.1 MPa and 43.9 \pm 1.3 MPa. The uniaxial compressive tests results exhibited measurable differences, both for the different the weathering grades as well as the failure modes. The results shown that the compressive strength for slightly weathered granite was 2/3 (67%) of the strength of fresh granite. The values of compressive strength for material and discontinuity failure was half (50%) of the strength of material failure.

Some engineering geological and geophysical properties of weathered granitic soils in Fraser Hill, Pahang

Zaw Win*, Umar Hamzah & Abdul Rahim Samsudin

Programme Geology, School of environmental and natural resource science Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor *Email Address: rofiquezw@gmail.com

The Bukit Fraser granite exhibits a full range of weathering grades. The variation of engineering geological characteristics and geophysical properties were measured through the weathering profile. The thickness of each grade materials varies from place to place and the weathering profiles are gradational in nature. Most of the profile shows thin residual soil layer. The completely weathered (CW) Grade V is thick, and frequently contains highly weathered (HW) core stones. The highly and moderately weathered materials are commonly thicker and the fresh rock is normally encountered beyond the slightly thin weathered layer. From grain size analysis, the soil range from clay with some gravel and sandy silt to very silty sand. Results show that highly weathered to residual granitic soil in the study area have intermediate plasticity (10 – 15%), low moisture content (12.67 – 26.67%) and higher shear strength ($\phi = 11 - 33^\circ$; c = 24 - 35 kPa). The grain size increases with depth as the weathering grades decreases. An increase in the degree of weathering results in an increase in pore volume and a decrease in relative density. Field observations and geophysical surveys show that the rock has been weathered up to 30 meters depth along the survey lines. Geophysical surveys result also show that the seismic P-wave velocities range from 300 - 800 m/s for top residual soil to completely weathered soil layers, 900 to 1500m/s for compacted saturated soil layer and 1500 – 2500 m/s for highly to moderately weathered rock. The surface electrical resistivity also varies with the increase of weathering grade. Average resistivity changes from 1500 ohm/m for grade VI to 4000 ohm/m for grade IV material. Both seismic velocities and resistivity increase with decrease in the weathering grades. The seismic refraction data are reliable and show consistent results. Seismic velocity was correlated to the properties of geomaterials and depths of bedrock. The variations of the properties of weathered materials show some good correlations with the degree of weathering. The data presented in this paper are important input in geotechnical engineering such as slope stability for highway constructions projects in Malaysia.

Paper P24

Geoelectrical study of Taman Beringin landfill, Kuala Lumpur, Malaysia

Yalda Motadelrou^{1*}, Samsudin Taib¹ & Roslan Hashim²

¹Department of Geology, University of Malaya, 50603 Kuala Lumpur, Malaysia ²Department of Civil Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia * Email: yalda.motadelro@gmail.com

Nowadays, landfills due to their potential effects on groundwater and soil contamination have attracted scientists' attention towards themselves. Heavy rainfall in tropical countries like Malaysia increases ability of waste pile to absorb water and therefore this area is expected to suffer from more pollution problems. This paper discusses the result of the performed measurements of 2D resistivity imaging for exploration of the extent of contaminated leachate plumes and delineation of subsurface profiling as well as proving the potential of this type of geophysical survey technique as an efficient and cost benefit tool for mapping subsurface features. In this study, 2D direct current electrical resistivity method was carried out at a covered and closed landfill called Taman Beringin in Kuala Lumpur. This covered and closed landfill is located in an ex-mine area near Jinjang river. The survey was conducted using SAS 1000 resistivity meter along six 200-m lines using a multi-electrode resistivity meter with 64 electrodes at 5 m intervals. Line L1-L'1 was laid out from southeast to northwest on the top of the landfill. Line L2-L'2 was located along the access road to the top of the landfill. Four lines, L3-L'3, L4-L'4, L5-L'5 and L6-L'6, were laid out at the bottom of the landfill and parallel to Jinjang River. The results obtained from the performed measurements of both wenner and dipole-dipole arrays in this landfill in the period of 5 months. The inversion results of the apparent resistivity data collected from lines L3-L'3, L4-L'4, L5-L'5 and L6-L'6 were combined to simplify the interpretation and better representation of the subsurface structures. The results indicate different leachate zones with low resistivity values ($< 10 \ \Omega m$) in the profiles of the lines in the landfill. The presence of these zones in the results for different months and changes in their sizes are evidence for the movement of the leachate from the top to the bottom of the investigation site.

The effect of bedding plane orientation towards P-wave velocity of Berea Sandstone at different water saturation degree

Hammad Hazim Bin Mohd Azhar* & Zuhar Zahir Tuan Harith

Petroleum Geoscience Department, Universiti Teknologi Petronas, 31750, Tronoh, Perak *Email Address: hammadhazim@gmail.com

Bedding plane orientation has a significant influence on the sound velocity, specifically P and S wave. Thus, a correlation between sound velocity and bedding plane orientation effect would be highly useful in characterizing rock physics properties. In this study, P and S wave velocity measurement were performed on 9 core plugs, 3 of which were parallel, 3 of which were perpendicular and 3 of which were 45 degrees incline to the bedding plane. Each core was saturated with 80 000 ppm brine water and the velocity measurement were made at different saturation degree until they are completely dry.

From the data retrieved, P wave velocity data distribution for each bedding plane showed different pattern of trend even though they are from the same sedimentary field. This clearly shows that anisotropic effect took place in affecting the P wave velocity value. The results obtained were then modeled using Gassmann's theory and it was found that the measured data did not fit the equation. The P wave velocity data measured were way greater than the estimated value which concludes that the rocks tested in this study were not the same type as Gassmann used before to derive his equation.

By using regression analysis, a strong correlation between wet-rock P wave velocity and dry-rock P wave velocity for different bedding plane was developed. As a result, 3 different equations had successfully been derived to predict the wet-rock P wave velocity from the dry-rock P wave velocity for each bedding planes orientation.

Paper P26

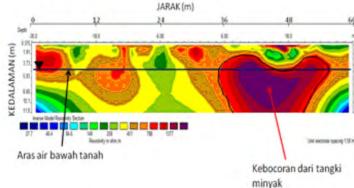
Survei keberintangan geoelektrik dan GPR dalam kajian pencemaran minyak di sekitar Stesen Caltex Kubang Kerian, Kota Bharu, Kelantan

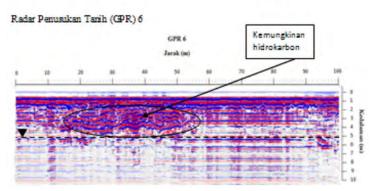
CHE KU MOHD WAQIYUDDIN CHE KU BESAR, UMAR HAMZAH & ROFIKUL ISLAM

Program Geologi, Pusat pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Alamat Emel: waqi_cheng88@yahoo.com

Survei keberintangan geoelektrik telah dilakukan di stesen minyak Caltex Kubang Kerian, Kota Bharu, Kelantan untuk menyiasat pencemaran bawah tanah yang disebabkan kebocoran tangki minyak di sekitar kawasan tersebut. Pengukuran geofizik telah dijalankan di sepanjang empat belas garis survei. Survei keberintangan geoelektrik telah dilakukan dengan teknik Schlumberger sepanjang dari 30 m hingga 60 m dan jarak elektrod di lapangan ialah dari 0.5 hingga 1.5 m. Data lapangan diproses dengan perisian RES2DINV untuk mendapatkan model 2D. Hasil menunjukkan keberintangan pencemaran hirdokarbon ialah antara 200 Ωm hingga 10000 Ωm. Survei radar penusukan tanih (GPR) juga dilakukan pada 8 profil di kawasan kajian. Keratan rentas GPR menunjukkan dengan jelas kehadiran aras air tanah yang berasosiasi dengan longgokan minyak. Zon berkeberintangan tinggi yang berasosiasi dengan zon pasir tidak tepu dan zon pencemaran minyak menunjukkan amplitud pantulan yang tinggi dan berbentuk kacau (chaotic) manakala zon keberintangan rendah yang berada di bawah aras ait tanah menunjukkan pantulan yang kurang jelas kerana faktor serapan gelombang EM yang digunakan. Model songsangan 2D keberintangan geoelektrik dibandingkan dengan model imej GPR pada garis survei yang sama untuk tafsiran yang terperinci. Model keberintangan menunjukkan hasil kajian yang lebih dalam manakala hasil GPR hanya pada aras air tanah sahaja. Oleh itu hasil keberintangan geoelektrik adalah lebih baik dalam kajian pencemaran minyak dalam air tanah. Data keberintangan menegak yang dilakukan dalam lubang auger cetek membuktikan dengan lebih jelas tentang kehadiran minyak pada kedalaman tertentu yang berasosiasi dengan sampel tanah tercemar. Aluvium Kuaterner di lokasi kajian berkomposisi dominan pasir dan sedikit lodak yang boleh dikelasifikasikan sebagai pasir berlodak. Sampel air yang diambil dari 12 perigi pemantauan dianalisis untuk mendapatkan beberapa sifat fizik air. Nilai kekonduksian elektrik purata ialah 95.52 μs/cm. Manakala pH ialah 5.85, oksigen terlarut 6.37 mg/l, dan TDS ialah 6.135 mg/l. Nilai purata pH sampel tanih adalah sedikit berasid dan sedikit beralkali iaitu antara 4.6 hingga 9.9. Analisis logam berat juga menunjukkan kehadiran logam seperti Cr, Mn, Fe, Ni, Cu, Zn, Cd, dan Pb. Manakala logam toksik seperti As juga didapati dalam sampel tanih dan air. Logam berat ditafsirkan berasal dari minyak yang masuk ke dalam air dan tanih di sekitar.

Rajah 1 menunjukkan perbandingan garis survei keberintangan RES 7 dengan Radar Penusukan Tanih GPR 6. Kedua-dua keratan rentas tersebut diambil pada satu garis survei yang sama. Garis survei ini terletak di bahagian belakang stesen minyak Caltex. Permulaan pada garis survei RES 7 iaitu bahagian kiri rajah adalah bersamaan dengan bahagian kanan keratan rentas Radar Penusukan Tanih GPR 6.


Pada garis survei RES 7 dapat ditafsirkan terdapat kebocoran daripada tangki minyak pada jarak 34 m hingga 56 m berpunca daripada stesen minyak Caltex tersebut. Hal ini disebabkan nilai keberintangan yang tinggi ditunjukkan sekitar 788 Ωm hingga 1377 Ωm. Kebocoran daripada minyak tersebut ditunjukkan dengan warna keberintangan yang tinggi iaitu dari warna merah hingga


warna ungu. Kebocoran yang berlaku berada sekitar aras air bawah tanah iaitu 5 m. Keberintangan yang rendah ditunjukkan dengan warna hijau hingga biru dimana menunjukkan kedudukan air bawah tanah.

Pada keratan rentas GPR 6 menunjukkan struktur di bawah permukaan berdasarkan riak pantulan yang ditunjukkan. Keratan rentas GPR 6 menunjukkan terdapat kehadiran longgokan minyak pada aras air bawah tanah. Kehadiran minyak di kesan berdasarkan zon keberintangan yang tinggi dimana ditunjukkan dengan amplitud pantulan yang berbentuk kacau (chaotic). Pada keratan rentas GPR 6 menunjukkan kehadiran longgokan minyak pada jarak 15 m hingga 55 m. Zon keberintangan rendah pula ditunjukkan pada kedudukan dibawah air tanah dimana amplitud pantulan adalah kurang jelas dan lemah disebabkan faktor serapan gelombang EM.

Perbandingan dibuat antara garis survei RES 7 dengan GPR 6 pada laluan yang sama. Daripada perbandingan tersebut memang wujud kehadiran minyak dimana kedudukan yang dikesan berkeberintangan tinggai adalah sama pada keduadua keratan rentas tersebut. Oleh yang demikian, pada garis survei tersebut terdapat longgokan minyak pada aras air bawah tanah.

Garis Survei Keberintangan RES 7

Rajah 1: Perbandingan antara Garis Survei Keberintangan RES 7 dengan Radar Penusukan Tanih GPR 6.

Paper P27

Kajian petrografi dan geokimia batuan igneus di kawasan selatan Pulau Pinang

Fadzlin Hasani Kasim* & Mohd Rozi Umor

Program Geologi, Pusat Pengajian Sains Sekitaran & Sumber Alam Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan *Alamat Emel: fadzlinhasani@gmail.com

Kertas kerja ini menerangkan tentang kajian petrografi dan geokimia di sekitar kawasan selatan Pulau Pinang meliputi Kampung Pasir panjang, Kampung Pulau Bentung, Kampung Genting, Kampung Terang, Kampung Tengah, Kampung Nelayan, Kampung Teluk Kumbar, Kampung Binjal, Batu Maung dan Kampung Teluk Tempoyak Kecil. Terdapat 12 lokaliti cerapan yang dilakukan penelitian dan persampelan. Kajian terbahagi kepada kajian terdahulu, kajian di lapangan dan kajian makmal. Kajian terdahulu mencadangkan Pulau Pinang terdiri daripada 3 jenis batuan granit, iaitu granit biotit dan granit biotit muskovit. Rejahan pluton di Pulau Pinang dikatakan berada pada Trias Atas. Kawasan selatan Pulau Pinang terdiri daripada kedua-dua unit batuan granit biotit dan granit biotit muskovit yang mempunyai butiran sederhana hingga kasar. Kebanyakan batuan tersebut mempunyai aturan megakris K-feldspar. Hasil kajian di lapangan membuktikan terdapat tiga jenis batuan granit di kawasan kajian iaitu granit biotit porfifi, granit biotit muskovit porfiri dan granit biotit muskovit butir sederhana. Batuan granit biotit porfiri mempunyai tekstur porfiri dan dapat dikenali di lapangan dengan kehadiran mineral K-feldspar yang kasar iaitu saiznya yang lebih dari 5 mm. Granit biotit muskovit porfiri dan butir sederhana dapat dikenali di lapangan dengan kehadiran mineral muskovit yang berkeping dan dapat dilihat dengan jelas. Untuk yang mempunyai tekstur porfiri, dapat dilihat fenokris K-feldspar yang bersaiz purata 5.5 mm. Kajian di makmal diwakili oleh kajian petrografi yang dibuat terhadap sampel-sampel yang dipilih. Kajian tersebut membuktikan lagi terdapat 3 unit batuan di kawasan kajian. Hasil kajian XRF menunjukkan SiO, iatu kuarza mempunyai purata peratus yang paling tinggi iatu 67.74 % diikuti Al,O, 16.11 % dan K,O sebanyak 6.0 %. Daripada plotan gambarajah Harker yang ditunjukkan oleh ketiga-tiga batuan, dapat disimpulkan bahawa batuan granit di kawasan kajian berasal dari fraksi magma yang sama.

Petrografi dan geokimia batuan granit di bahagian utara Pulau Pinang

Noraznida Bt. Kamaruszaman* & Mohd Rozi Umor

Program Geologi, Pusat Pengajian Sains Sekitaran dan Sumber Alam Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor *Alamat Emel: noraznidaaman@gmail.com

Kertas kerja ini bertujuan untuk mendapatkan maklumat berkenaan petrografi dan geokimia batuan granit di kawasan utara Pulau Pinang. Kajian petrografi ke atas irisan nipis yang dibuat daripada sampel lapangan dapat memperihalkan kandungan mineral utama dan aksesori serta tekstur batuan secara mikroskopik. Berdasarkan kandungan mineral dan tekstur batuan, batuan dikelaskan kepada tiga jenis batuan iaitu granit biotit berbutir kasar, granit berbutir sederhana dan granit biotit porfiri. Kesemua batuan mempunyai peratusan kuarza antara 20% - 40% isipadu batuan. Peratusan mineral feldspar alkali adalah antara 10% - 50% dan peratusan mineral plagioklas pula adalah antara 8% - 50% isipadu batuan. Mineral aksesori yang hadir adalah biotit, apatit dan zirkon. Antara tekstur batuan yang dikenalpasti adalah tekstur poikilit, mikropertit dan pengezonan. Berdasarkan pengelasan batuan igneus mengikut Streckeisen (1976), batuan igneus di lapangan adalah setara dengan batuan granit hingga granodiorit. Kajian geokimia terhadap unsur-unsur major iaitu SiO., Al,O., Fe,O., MgO, CaO, Na,O dan K,O dan unsur minor iaitu TiO. dalam sampel batuan dapat menjelaskan tentang asalan jenis magma dan sejarah pembentukan batuan di kawasan kajian. Set data geokimia yang diperolehi daripada kaedah XRF boleh diolah untuk mengelaskan batuan berdasarkan kandungan kimia, asalan magma dan sekitaran tektonik. Pengelasan asas berdasarkan peratus berat unsur silika, dimana sampel batuan memberikan nilai peratus berat unsur silika iaitu 66% - 72% mengesahkan batuan adalah terdiri daripada kumpulan asid. Plot pada gambarajah Harker memberikan korelasi negatif bagi unsur CaO, Al,O., MgO, Fe,O., dan TiO, melawan unsur SiO, dan korelasi positif bagi unsur Na,O melawan SiO,. Berdasarkan dapatan nilai A/NK dan A/CNK, nilai A/NK lebih daripada satu dan A/CNK kurang daripada satu. Oleh itu batuan dikelaskan kepada jenis metalumina dan granit jenis I. Peratus Na,O adalah melebihi 3.2 %. Granit jenis I ini juga dibuktikan dengan nilai CIPW Korundum dan Diopsid adalah kurang daripada 1 %. Pengelasan TAS membahagikan batuan kepada granit dan seinit. Sekitaran tektonik pula dicadangkan pada sekitaran orogenik yang mengalami pengangkatan lewat dan semasa berlakunya proses pertembungan kerak.

Paper P29

Kajian petrografi dan geokimia batuan igneus di Teluk Bahang-Balik Pulau, Pulau Pinang

Mohammad Azuan Ab Talib* & Mohd Rozi Umor

Program Geologi, Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Alamat Emel: mohammadazuan88@gmail.com

Kertas kajian ini membincangkan kajian petrografi dan geokimia di kawasan barat di Pulau Pinang meliputi kawasan Teluk Bahang hingga ke Balik Pulau. Terdapat 26 lokaliti cerapan telah dilakukan untuk penelitian dan persampelan. Kajian terdahulu telah mencadangkan granit di Pulau Pinang merejah pada Trias Lewat dan terbahagi kepada 2 pluton, utara dan selatan. Pluton utara terdiri daripada granit biotit berbutir sederhana hingga kasar. Kawasan kajian di barat Pulau Pinang yang terletak di dalam pluton utara terdiri daripada batu granit biotit berbutir sederhana dan kasar. Kajian lapangan telah membuktikan terdapat 1 jenis batuan berwarna kelabu cerah, berbutir halus hingga kasar dan juga yang berporfiri tidak jelas di sesetengah tempat. Batuan granit biotit berbutir kasar terdiri daripada kuarza yang bersaiz purata 8 mm manakala plagioklas dan alkali feldspar bersaiz purata 5 mm. Batuan granit berbutir sederhana pula mempunyai kuarza bersaiz purata 4 mm manakala plagioklas dan alkali feldspar bersaiz purata 3 mm. Terdapat juga batuan granit biotit berbutir halus yang mempunyai saiz butiran kurang daripada 1 mm. Batuan granit berporfiri tidak jelas pula terdiri daripada fenokris K-feldspar yang bersaiz purata 10 mm dan kuarza serta plagioklas sebagai jisim latar. Terdapat 2 hingga 3 set struktur kekar di sesetengah lokaliti. Kajian makmal dilakukan terhadap 25 sampel keratan nipis batuan granit yang terpilih. Kajian tersebut membuktikan terdapat 1 jenis batuan yang mempunyai tekstur yang berlainan di kawasan kajian. Batuan granit biotit bertekstur halus mempunyai mineral bersaiz julat 0.2-1 mm. Batuan yang bertekstur sederhana hingga kasar mempunyai mineral yang bersaiz julat 2-5 mm. Di dalam batuan granit berporfiri tidak jelas pula terdiri daripada fenokris K-feldspar dan plagioklas yang bersaiz purata 2 mm dan kuarza sebagai jisim latar. Hasil analisis XRF menunjukkan unsur major terhadap kesemua jenis batuan mendapati bahawa SiO, mempunyai peratusan yang tinggi berbanding unsur major yang lain iaitu 73.20 %. Secara puratanya peratusan unsur major bagi setiap sampel ialah SiO,=69.35, TiO,=2.82, Al,O₃=15.75, Fe,O₃=2.22, MgO=0.30, CaO=1.06, Na₂O=3.24 dan K₂O=7.02. Batuan di kawasan dikelaskan kepada jenis granit jenis-I dan jenis -S. Oleh itu, hasil analisis geokimia terhadap 7 sampel batuan kawasan kajian mendapati ianya adalah jenis-I bagi sampel L1 dan L2(2) manakala jenis-S bagi 5 sampel yang lain mengikut pengelasan Shand. Berdasarkan gambarajah Harker, didapati bahawa batuan di kawasan kajian terdiri daripada 1 fraksi magma yang sama.

The petrography and geochemical signature of granitic body along the Kajang – Sungai Long Silk Highway, Hulu Langat, Selangor

SITI NURFARHANA BT MOHAMED ZAID¹ & HAMZAH MOHAMAD²

¹Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak ²Program Geologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor

The study area is a 4.1km stretch of Kajang Silk Highway, starting from km 16.4 (Kajang Perdana Exchange) towards Sungai Long exit. The moderately undulating hills making up the southern part of the Main Range expose continuous road cuts at five localities (L1 to L5), intermitted by low lying areas barren of outcrops. A total of 50 fresh granitic samples, 10 from each road cuts have been collected for petrographic study and 36 of them have been geochemically analyzed. Field observations have shown that the leucocratic rocks are comprised of coarse-grained biotite granite, medium-grained biotite granite, coarse-grained two-mica granite, and medium-grained two-mica granite. By means of conventional point counting technique for medium-grained rocks and integrated field-microscopic point counting technique for coarse-grained rocks on 41 samples, the granitic rocks of the study area are divisible into three mineralogical classes, in accordance with presently accepted IUGS's scheme. They are quartz-rich granitoid (8 sample, dominating L4 outcrops), granodiorite (25 sample; L1, L2 and L3 outcrops), and granite (8 sample, confined to Loc 5 outcrops). By combining mineralogy and texture, the final nomenclature for the granitic rocks of the study area are (1) Medium-grained quartz-rich biotite granitoid, (2) Medium-grained biotite granite, (3) Medium-grained two-mica granite, (4) Course-grained biotite granodiorite, and (5) Coarse-grained two-mica granodiorite. The average chemical compositions of the 36 samples determined by X-ray fluorescence technique (XRF) are: SiO, 78.07, TiO, 0.31, Al₂O, 14.12, Fe₂O, 1.39, MnO 0.06 and CaO 1.58, in weight percentage; and As 15, Ba 73, Co 34, Cr 13, Ni 86, Rb 883, Sr 69, V 3, Zn 97 and Zr 166, in μg/g. The studied plutonic body shows rather wide range of SiO,, i.e. 71.78 - 86.69%, indicating its origin from moderate to highly acidic magma. The rather strong negative correlations shown by SiO₂-TiO₂, SiO₂-Fe₂O₃, SiO₂-MnO and SiO₂-CaO and a positive SiO₂-Al,O, correlation suggest that the five rock types originated from the same parent acidic magma through magmatic evolution, most possibly through fractional crystallization. Some trace elements are depleted as the evolution progresses (e.g. Ba, Rb, Ni), while others have undergone enrichment (e.g. Sr, As).

Paper P31

The petrography and geochemical signature of granitic body at the vicinity of Berjaya Hill Resorts, Bentong, Pahang

Nurul Farah Rahamat Noor¹ & Hamzah Mohamad²

¹Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak ²Program Geologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor

The study area is a 20km stretch of a ring road climbing up to the hill top and descending to the same entry point, connecting places of interest in the popular resorts. Slightly weathered rocks of Bukit Tinggi Granite which form the eastern plank of the Main Range are exposed along the hilly road cuts. Field observations on 37 localities have shown that the leucocratic rocks are comprised of coarse-grained biotite granite (9), strongly porphyritic biotite granite (19) and weakly porphyritic biotite granite (9), with unclear boundaries. All rocks show some degree of deformation from a number of faults in their vicinity. A total of 41 samples have been collected for petrographic study and 34 of them have been geochemically analyzed. By means of conventional point counting technique for equigranular rocks and integrated field-microscopic point counting technique for strongly porphyritic rocks, the granitic rocks of the study area are divisible into three mineralogical classes, in line with the presently accepted IUGS's scheme. They are quartz-rich granitoid (24), granite (14) and alkali feldspar granite (3). By combining mineralogy and texture, the final nomenclature for the granitic rocks of the study area are (1) Coarse-grained biotite granite, (2) Medium-grained porphyritic biotite granite, (3) Fine-grained porphyritic biotite granite, (4) Coarse-grained alkali feldspar biotite granite, (5) Fine-grained alkali feldspar biotite granite, (6) Coarse-grained quartz-rich biotite granitoid, and (7) Medium-grained porphyritic quartz-rich biotite granitoid. The average chemical compositions of 36 samples determined by X-ray fluorescence technique (XRF) are: SiO, 66.48, TiO, 0.33, Fe₂O, 3.37, MnO 0.03, MgO 0.04, CaO 1.27 and P₂O₅ 0.08, in weight percentage; and As 18, Ba 147, Co 33, Cr 7, Ni 89, Rb 722, Sr 81, V 20, Zn 85 and Zr 396, in µg/g. The Berjaya Hill plutonic body shows rather narrow range of SiO,, i.e. 57.78 – 74.01%, indicating its origin from intermediate to typical acidic magma. The rather strong negative correlations shown by SiO₃-TiO₃, SiO₃-Fe₂O₃, SiO₃-MnO and SiO₃-CaO suggest that the seven rock types crystallized from the same parent magma of intermediate-acidic composition through magmatic evolution, most possibly fractional crystallization. Some trace elements are depleted as the evolution progresses (e.g. Ba, Sr, V), while Rb and As have undergone enrichment.

The petrography and geochemical signature of granitic body along the coast of Tanjung Bidara, Masjid Tanah, Melaka

Puteri Sarah Ab Nasir¹, Suhaila Mohd Raes² & Hamzah Mohamad²

¹Department of Geology,Universiti of Malaya 50603Kuala Lumpur ²Program Geologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor

The study area is a 7.5km coastal area of Tanjung Bidara, Masjid Tanah, Melaka, stretching from Kg. Tanjung Bidara in the north to two kilometers off Tanjung Panchor in the south. In the northern half of the area, the outcrops are dominated by coarse-grained porphyritic biotite granite. Further south the same rock type predominates the coast, with minor occurrences of aplite and tourmaline pegmatite, both in the form of dykes, 0.6 – 1 m thick. Xenoliths of darker rocks are also common, ranging in size from a few cm to 10 cm. 52 samples have been collected for petrographic, as well as geochemical studies. By means of conventional point counting technique and integrated field-microscopic point counting, the main granitic rocks of the study area is granite, based on presently accepted IUGS's scheme, with an affinity towards alkali-feldspar quartz granite. The average chemical compositions of 52 samples determined by X-ray fluorescence technique (XRF) are: SiO₂ 67.48, TiO₂ 0.42, Fe₂O₃ 3.43, MnO 0.05, CaO 1.66, K₂O 5.42 and P₂O₅ 0.18, in weight percentage; and As 11, Ba 346, Co 39, Cr 11, Ni 73, Rb 534, Sr 116, V 30, Zn 81 and Zr 304, in µg/g. The studied plutonic body shows rather narrow range of SiO₂, i.e. 64.87 – 71.96%, indicating its origin from crystallization of typical acidic magma. The rather strong negative correlations shown by SiO₂-TiO₂, SiO₂-Fe₂O₃, SiO₂-MnO and SiO₂-CaO and a positive SiO₂-K₂O correlation suggest that the slight compositional variation within the rocks of the studied area is due to magmatic evolution, most possibly by fractional crystallization of the parent acidic magma. The strongly porphyritic nature of the rocks suggests the possible two-stage crystallization, started by the feldspar phenocrysts. Some trace elements are depleted as the evolution progresses (Co, Cr, Sr, V and Zn), while others have undergone enrichment (As, Ba, Rb and Sr).

Paper P33

Deformations in the metasediments and conglomerates of Tanjung Leman, Johor

Mustaffa Kamal Shuib

Department of Geology, University of Malaya, 50603, Kuala Lumpur Email Address: mustaffk@um.edu.my

Tanjung Leman, which is underlained by multiply deformed Paleozoic Mersing Beds in unconformable contact with the overlying continental Murau Conglomerates provide an opportunity to study the deformation episodes and history for east coast of Johore as well as to understand the nature of the Murau basin. It was determined that the underlying metasediments have undergone two early ductile deformations overprinted by two distinct episodes of brittle-ductile deformation. The earliest northwest–southeast compression (D_1) produced open upright folds with variably developed north-northwest-striking cleavage. Renewed northwest–southeast compression produced second sets of folds with localized strike-parallel shear zones. Interference between folds is well developed. The general structure of the area is the result of the third episode of deformation (D_3) . It gives rise to NNW striking shear zones that deformed the first two structures into asymmetric sub-vertical folds. The latest episode of deformation (D_4) includes NNE-SSW trending dextral strike-slip faults with subordinate E-W striking sinistral strike-slip faults, conjugate normal faults and negative flower structures suggestive of deposition and deformation in a transtensive environment. They are cut by NNE-SSW trending dextral strike-slip faults with subordinate E-W striking sinistral strike-slip faults assigned to the latest episode of deformation (D_4) . The deformation provide evidences for early contractional and later dextral transpressional deformation of the Mersing Beds that lead to the development of the Murau basin in a transtensive regime.

Mikrostruktur dan analisis kinematik batuan milonit S-C di Bukit Tinggi, Pahang

Norsafawati Saaid & Ng T.F.

Jabatan Geologi, Universiti Malaya, 50603 Kuala Lumpur

Sebuah kajian mikroskopik mengenai mikrostruktur dan kinematik batuan milonit S-C telah dijalankan di sekitar kawasan Bukit Tinggi, Pahang. Zon Sesar Bukit Tinggi (BTFZ) merupakan salah satu zon sesar utama di semenanjung Malaysia yang melintasi kawasan ini. Zon Sesar Bukit Tinggi merupakan sebuah sesar gelinciran jurus (Shu, 1969; Tjia, 1972; Ng, 1994). Pembentukan beberapa episod sesar di kawasan ini telah menghasilkan pelbagai jenis batuan sesar di antaranya batuan milonit dari jenis S-C. Kawasan kajian dijalankan adalah zon di mana batuan milonit S-C tersingkap paling baik. Kajian mikroskopik batuan milonit S-C ini telah dijalankan dengan menggunakan keratan nipis berarah.

Mineral-mineral utama yang terdapat di dalam milonit S-C ini ialah kuarza, feldspar dan biotit. Mineral kuarza dan biotit menunjukkan sifat yang mulur dengan pembentukan mikrostruktur seperti padaman bergelombang, deformasi jaluran, reben kuarza dan pembentukan sub-butiran bagi kuarza serta lipatan dan penghabluran semula bagi biotit. Sementara mineral-mineral feldspar pula menunjukkan sifat yang rapuh seperti pembentukan retakan mikro dan sedikit mulur seperti pembentukan kembaran mekanikal, *flame perthite* dan penghabluran semula.

Selain itu, penentu kinematik juga dapat dilihat seperti fabrik S-C, foliasi sendeng, porfiroklas mika, porfiroklas feldspar bersayap serta porfiroklas feldspar ofset. Fabrik S-C dibentuk oleh permukaan C yang ditanda oleh neoblas kuarza, mineral opak serta jaluran mineral filosilikat dan serpihan butiran feldspar yang halus. Permukaan S pula dibentuk oleh lensa-lensa kuarza yang menunjukkan orientasi terpilih ke arah ricihan utama iaitu ke arah menganan. Foliasi sendeng pula dibentuk oleh sub-butiran, neoblas dan lensa kuarza yang mengalami pemanjangan ke arah terikan utama. Fabrik yang memanjang ini mengarah masuk ke dalam foliasi C pada sudut yang kecil. Orientasi kesendengan menunjukkan arah terikan menganan. Porfiroklas mika juga terbentuk dengan baik di dalam milonit S-C iaitu selari dengan permukaan S dan condong ke arah ricihan. Permukaan terpanjang mika ini adalah selari dengan permukaan S. Heretan-heretan serpihan mika kecil memanjang ke dalam matrik dan menjulur daripada satu mika ke mika yang lain dan menunjukkan juluran yang lebih tinggi berada di sebelah kanan.

Kebanyakan porfiroklas mantel bersayap yang ditemui pula adalah dari jenis σ_b (Simpson & Schmid, 1983). Porfiroklas dibentuk oleh klas-klas feldspar yang mempunyai bentuk lentikular atau membujur. Butiran halus mantel mengalami deformasi dan membentuk sayap yang terdiri daripada neoblas feldspar, neoblas biotit serta lensa dan neoblas kuarza yang memanjang. Semua porfiroklas bersayap menunjukkan sayap kanan berada pada kedudukan yang lebih tinggi daripada sayap kiri. Porfiroklas feldspar ofset pula mengalami pecahan dan bergerak di sepanjang sesar mikro. Kebanyakan daripada mereka adalah antitetik dimana kedudukan pecahan klas-klas feldspar berada pada sudut yang besar kepada foliasi C. Arah pergerakan relatif sesar mikro ini adalah mengiri iaitu songsang kepada arah pergerakan zon ricihan.

Hasil daripada analisis mikroskopik deformasi mikrostruktur ke atas batuan milonit S-C menunjukkan batuan milonit ini terbentuk pada keadaan rapuh mulur ataupun zon peralihan daripada rapuh ke mulur mengikut konsep model zon sesar yang dicadangkan oleh Sibson (1985). Dianggarkan suhu dimana milonit S-C ini terbentuk adalah 250°C hingga 450°C. Sementara itu, daripada kajian mikroskopik penentu kinematik pula menunjukkan sesar yang menghasilkan milonit S-C mempunyai peralihan menganan.

Rujukan

Ng, T.F., 1994. Microstructures of the deformed granites of eastern Kuala Lumpur — Implications for mechanisms and temperatures of deformation. Bulletin Geological Society of Malaysia, 35:47-59.

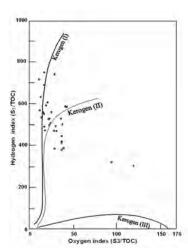
Shu, Y.K., 1969. Some NW trending faults in the Kuala Lumpur and other areas. Newsletter, Geological Society of Malaysia, 17:1-5.

Simpson. C., 1985. Deformation of granitic rocks across the brittle-ductile transition. Joournal of Structural Geology, 7, 503 -5 11.

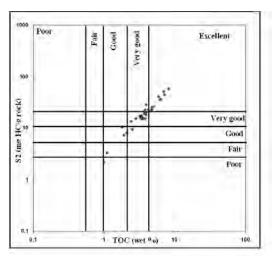
Simpson, C. & Schmid, S.M., 1983. An evaluation of criteria to deduce the sense of movement in sheared rocks. Geological Society of America Bulletin 94, 1281–1288.


Tjia, H.D. 1972. Strike slip faults in West Malaysia. 24th Int. Congr., Montreal 1972, Section 3, pp. 255 262.

Source rock characteristics and basin modelling of the Upper Jurassic Madbi Formation, Masila Basin, Yemen


Mohammed Hail. Hakimi*, Wan Hasiah Abdullah & Mohamed R. Shalaby

Department of Geology, University of Malaya, 50603 Kuala Lumpur *Email Address: ibnalhakimi@yahoo.com


The Masila Basin is an important hydrocarbon province in Yemen (Fig.1), however the origin of the hydrocarbons is not fully understood. In this study, we evaluate the Upper Jurassic source rock in the Madbi Formation and assess the results of basin modeling in order to improve our understanding of burial history and hydrocarbon generation. Evaluation of the hydrocarbon source rock potential and oil generation in the central-west of the Masila Basin were based on organic geochemistry (Rock-Eval pyrolysis, TOC and bitumen extraction) and organic petrology studied. Shales in the Upper Jurassic Madbi Formation contain relatively high quantities of organic matter (usually more than 2.0 wt% TOC; Fig.2) and have very good to excellent hydrocarbon potential (Fig.2). The shales predominantly contain algal Type II kerogen with minor Type I kerogen (Fig.3). Thermal maturity of the organic matter is 0.69–0.91% vitrinite reflectance. Thermal and burial history models indicate that the source rock entered the early- mature to mature stage in the Late Cretaceous to Early Tertiary times (Fig.4). Therefore, the hydrocarbon generation from the Madbi source rock occurred in the Late Cretaceous, reaching maximum rates during the Early Tertiary (Fig.4). Cretaceous subsidence had only a minor influence on source rock maturation and organic matter transformation. This source rock has generated commercial volumes of hydrocarbons which migrated into Jurassic and Lower Cretaceous reservoir rocks.

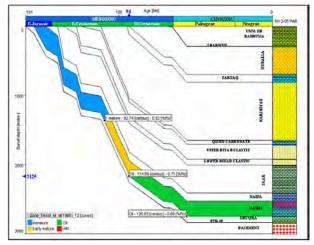

Figure 1: Location map of the study area in the central-west of the Masila Basin, showing locations of the studied wells.

Figure 3: Van Krevelen diagram based on oxygen index (OI) versus hydrogen index (HI), showing the oil prone kerogen type. Most samples plot along Types I and II evolution paths.

Figure 2: Distribution of shale samples into S2 verses total organic matter (TOC) plot; showing generative source rock potential.

Figure 4: Burial history curves with hydrocarbon zones of Madbi shale in wells KHA 3-08 in the study area.

Spatial-temporal variability of hydrocarbon distribution in the northern sector of the Belait Formation

Syamim Ramli^{1*}, Padmanabhan E.¹, M.A. Mokhtar² & Wan Ismail Wan Yusoff¹

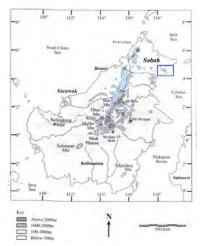
¹ Geoscience & Petroleum Engineering Department, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak ² PETRONAS Carigali Sdn. Bhd., Level 16, Tower 2, PETRONAS Twin Towers, KLCC, Kuala Lumpur *Email Address: syamim_g01261@utp.edu.my

Spatial and temporal variability is the subject matter of interest in the Oil and Gas Industry. Recently, Padamanabhan (2010) indicated that the Belait Formation in North-eastern Sarawak showed tremendous spatial and temporal variability. By understanding this variability, improvements may be introduced to understanding reservoirs and its managements.

The Belait Formation in North-eastern Sarawak represents the Middle—Upper Miocene age in the Miri Zone tectonostratigraphic. The Formation comprises alternating sandstone, sand and clays in varying proportions and thickness (Liechti *et al.*, 1960; Tate, 2001; Hutchison, 2005). Traditionally the Belait Formation has been accepted as barren. However it has been discovered recently that hydrocarbons can be present in various forms in the Formation. The purpose of this research is to investigate further the occurrence of hydrocarbon and to characterize this aromatic hydrocarbon in the northern sector of the Belait Formation in Sarawak. Four representative samples were selected from an outcrop that had a stratigraphic height of about 100m. These samples were subjected to range of mineralo-chemical analysis and petrographical analysis.

Fourier Transform Infrared spectra confirm the presence of aromatics in addition to free radicals and carboxyl group. This finding is further supported by variations of E_4/E_6 ratios varying from 1.43 - 1.52. The x-ray fluorescence spectrometry indicates a high amount of oxygen, silica and aluminum indicating the presence of minerals such as kaolinite and quartz. Subordinate amounts of iron can be attributed to the presence of hematite or goethite. Powder diffraction data confirms the presence of the above weathered minerals in addition to traces of mineral such as titanium. Surface area estimations revealed that the presence of aromatic hydrocarbons attribute to the substantial increase of surface area. It is concluded that there is a spatial and temporal variability of appreciable sense of the hydrocarbon distribution in the northern sector of the Belait Formation. The presences of the aromatics are probably terrestrial and indicative of kerogen type I to III. However, the ongoing study to confirm the kerogen type is expected to be completed later this year.

Paper 37


Lithofication and fossils of Quaternary carbonate rocks from the Bum-Bum Island, southeast Sabah, Malaysia

Kanaan Abdullah Jasim* & Azhar Hj Hussin

Department of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur *Email Address: kanaangeo@gmail.com

Bum-Bum Island one of many islands distribute along the east coast of Sabah state, East Malaysia, about 1 kilometer east of Semporna Town (Figure 1). This island crop out above the sea level as a result for the fluctuation and changing in sea level during the Quaternary, this fluctuation has effected strongly on the depositional environments of the sedimentary rocks there. The present topography of the area came as a result of period of erosion and volcanic activity during the Pliocene where the volcanic actions has continued and forming a large areas of volcanic rocks and sediment with volcanic detritus were deposited until the Quaternary which distinguished by a recession of sea level changes in most areas as a result of glacial and tectonic movements. A later recession of sea level of 25 to 30 feet in relatively recent times has caused the emergence of extensive old coral reef of the Semporna area and nearby islands.

As initial study total of 25 thin-sections represent the samples have been collected from carbonate rocks out crops around the coast of the island between 2-3 meters above the present day high tide level and the thickness of carbonate beds between 0.5 to 3.0 meters (Figure 2). The aim of this study is to estimate the depositional environment and the effecting of sea level changing during the time of deposition in addition to identify the marine conditions in terms of salinity, paleocurrent energy and organisms diversity. The carbonate sediment classified in to two microfacies; biomicrite and biosparite. These two facies has distinguished according to the bioclast

Figure 1: Topographic map of Borneo Island, showing the study area.

PERTEMUAN PERSATUAN (MEETINGS OF THE SOCIETY)

and matrix materials which include green and red algae, bivalves, gastropod and foraminifera in addition to micrite and sparite as matrix materials (Figures 3, 4 and 5). Based on the fossils and texture, the depositional environment has been interpreted to be a shallow marine, lagoon and tidal flat environments, with warm water, normal salinity and low to moderate water current energy.

Island.

Figure 2: one of the carbonate Figure 3: the Dasyclad green Figure 4: The bivalve shells rocks out crops in the Bum-Bum algae (DS) with foraminifera and (By) within sparite matrix (Sp). bivalves in micrite matrix.

Figure 5: Large benthonic foraminifera within sparite matrix.

Paper P38

Mikrofasies dan diagenesis batu kapur Sungai Kilim dan Sungai Kisap, Formasi Setul di Langkawi, Kedah Darul Aman

MOHD DANIAL HARIZ MOHD AZIR, CHE AZIZ ALI & KAMAL ROSLAN MOHAMED

Program Geologi, Pusat pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan Alamat Emel: danhariz69@gmail.com

Sungai Kilim dan Sungai Kisap terletak di bahagian timur laut Pulau Langkawi dan terdiri daripada perbukitan batu kapur yang diselangi oleh paya bakau. Batu kapur ini merupakan sebahagian daripada Ahli Batu Kapur Setul Atas dalam Formasi Setul yang berusia Ordovisi Tengah engah hingga Devon Akhir. Proses hakisan terhadap batu kapur yang berterusan telah menghasilkan morfologi karst di sepanjang Sungai Kilim dan Sungai Kisap yang membentuk fitur-fitur seperti stalaktik, gua batu kapur, pulau baki dan dolina. Perlapisan batu kapur yang tersingkap di kawasan ini mempunyai tiga set jurus yang utama iaitu berjurus barat laut-tenggara, barat daya-timur lautdan juga tenggara-barat laut dengan yariasi kemiringan berjulat 10°-60°. Batu kapur di kawasan ini berwarna kelabu gelap dan secara umumnya, litologi utama batu kapur yang di temui di kawasan ini terdiri daripada batu kapur berlapis nipis, batu kapur berpelapisan tebal, batu kapur massif, batu kapur hitam, batu kapur berlaminasi dan batu kapur koral. Daripada analisis petrografi yang dilakukan, butiran alokem utama yang membentuk batu kapur ini ialah peloid dan juga butiran kerangka. Butiran kerangka terdiri daripada pecahan cangkang gastropod, bivalvia, brakiopod, ostrakod dan alga. Batu kapur di kawasan ini boleh di bahagikan kepada 5 mikrofasies utama iaitu batu lumpur, batu wak, batu padat, batu butir dan juga dolomit. Batu lumpur dicirikan oleh kehadiran partikel karbonat bersaiz lumpur yang banyak. Ia juga dikenali sebagai mikrit. Mikrit ini membentuk hampir 90% daripada keseluruhan kandungan batuan ini. Batu lumpur karbonat ini mengandungi kandungan alokem yang kurang daripada 10%. Ia merupakan batu yang mempunyai sokongan matrik. Mikrofasies batu lumpur yang wujud terdiri daripada batu lumpur karbonat dan juga batu lumpur bioklas. Batu wak dicirikan oleh kehadiran alokem yang agak tinggi berbanding batu lumpur karbonat. Ia mempunyai kandungan alokem yang lebih daripada 10% dan kebiasaanya butiran alokem ini tidak bersentuhan antara satu sama lain. Selain daripada itu, ia juga masih terbentuk hasil daripada sokongan matrik. Dapat diperhatikan matrik yang berwarna agak gelap mengisi ruang-ruang kosong antara butiran alokem. Mikrofasies batu wak yang wujud terdiri daripada batu wak kristalin dan batu wak berdolomit. Batu padat pula dicirikan oleh kandungan butiran alokem yang tinggi sekitar 60%. Walau bagaimanapun, ia masih mengandungi kandungan matrik sekitar 30%. Apa yang membezakan batu padat dengan batu wak ialah batu ini mempunyai sokongan butiran dan mempunyai kurang kandungan marik. Butiran-butiran alokemnya bersentuhan antara satu sama lain. Terdapat sedikit kalsit spar sekitar 10%. Batu padat mengandungi tiga pecahan mikrofasies iaitu batu padat berpeloid, batu padat berdolomit dan juga batu padat berbioklas. Batu butir (rajah 4.12) dicirikan oleh kandungan matriknya yang sangat sedikit, dan kebiasaanya tidak langsung mengandungi matrik. Batu ini mempunyai sokongan butiran. Ruangruang kosong antara butiran diisi oleh simen kalsit spar yang kelihatan bewarna putih. Kandungan butiran alokem adalah sekitar 65% daripada jumlah kaseluruhan, manakala kalsit spar sebanyak 30% dan sedikit mikrit sekitar 5%. Batu butir berbeza dengan batu padat adalah dari segi jisim latarnya. Butiran alokem dalam batu butir diikat oleh kalsit spar manakala batu padat diikat oleh lumpur karbonat. Mikrofasies batu butir yang terdapat di kawasan ini merupakan batu butir bioklas. Dolomit merupakan batuan yang terbentuk daripada diagenesis batu kapur melalui proses pendolomitan. Mineral dolomit berbeza dari segi bentuknya dengan mineral kalsit. Hablur mineral dolomit berbentuk rombus. Batu dolomit yang mempunyai kandungan mineral dolomit dominan adalah sebanyak 90% hingga 100%. Namun terdapat juga mineral kalsit dalam sampel dolomit. Mikrofasies dolomit yang terbentuk terdiri daripada dolomit biasa, dolomit berkapur dan juga dolomikrit. Proses diagenesis yg berlaku terdiri daripada penyimenan, pemikritan, pendolomitan, pemadatan, pelarutan dan neomorfisma. Sungai Kilim dan Sungai Kisap ditafsirkan terenap di sekitaran laut cetek bertenaga rendah yang menumpu di sekitaran lagun hingga beting. Sekitaran diagenesis penyimenan dan neomorfisma mencadangkan sekitaran freatik air tawar, pemikritan mencadangkan sekitaran freatik air masin, pendolomitan mencadangkan berlakunya di zon percampuran, pelarutan di sekitaran freatik air tawar manakala pemadatan terbentuk akibat penimbusan dalam.

Detailed mapping of volcanic ash distribution in Lenggong and Kuala Kangsar areas

Norishah Hashim¹, Ros Fatihah Muhammad^{1*}, H. D. Tjia² & Omar Alkouri¹

¹Department of Geology, Universiti of Malaya, 50603 Kuala Lumpur ² Orogenic Resources Sdn Bhd, Shah Alam, Selangor *Email Address: rosfmuhammad@um.edu.my

Volcanic ash that is associated with 74k year old Toba eruption in Lenggong and Kuala Kangsar has been mapped in detail. Layers of fresh and reworked deposits of ash have been discovered with thickness up to more than 4 m mostly, in the valley area. Ash is more common at low elevation which is in vicinity of Perak River banks and on gentle slopes of palm oil estate. No occurrence has been found in high elevation possibly due to it has been eroded by wind and water, mixed with sand and clay and ultimately dispersed into river. The highest occurrence has been observed at 176 m from sea level and the lowest is at 58 m. The occurrences of reworked material under a few layers of fresh deposits could indicate a possibility that the tephra layers are originated from more than one source eruption. The objective of this study is to determine the extension of volcanic ash dispersal from Sumatra's Late Pleistocene eruptions in these areas. Recent studies suggested that Toba ash has even been found in bore logs from South China Sea apart from the previous discoveries in the west in Hindi Ocean and as far as the Arctic. These deposits have been subjected to long history of weathering and reworking since their fall. The distribution is heavily influenced by topographic that cannot be assumed to affect ash depth uniformly across the study area. We have used ArcGIS to refine this study and demonstrate the relationship of topographic of these areas with the distribution of volcanic ash.

Paper P40

Vertebrate fossils from Badak Cave C, Lenggong, Perak in Peninsular Malaysia

Yasamin Kh. Ibrahim^{1*}, Lee, C.P.¹, Ros Fatihah Muhammad¹, Earl of Cranbrook², Lim, T.T.³ & Kira, E.W.⁴

¹Department of Geology, University of Malaya, 50603 Kuala Lumpur, Malaysia
²Glemham House, Great Glemham, SAXMUNDHAM 1P17 ILP, United Kingdom
³Resource Stewardship Consultants S/B, PSS Kolam Ayer Lama Ampang, Lot 36904,
Jalan Kolam Ayer Lama, 68000 Ampang, Selangor
⁴Department of Environment and Geography, Macquarie University, NSW 2109, Australia
*Email Address: yasamin.ibrahim@yahoo.com

Badak Cave C (N 05° 08' 984" and E 100° 59 101") is one of several caves in a small limestone hill given the same name (Gua Badak), in the Lenggong Valley, Perak. The cave is located in an elongated limestone mogote hill about 5km north of Lenggong town in an area of above-ground limestone caves where rich archaeological material has been found including the famous Perak Man skeleton (10,000 y.b.p). The cave is elongated north-south and extends about 50m with two distinct narrow northeast-southwest branches. Its entrance is locatedat 12 m above ground level.

Abundant vertebrate fossils are found in remnants of alluvial sediments attached to the walls and floor of the cave that has been excavated by guano diggers. Most of the materials are disarticulated teeth and bone fragments found embedded in isolated clusters in several parts of the cave within the sediments. No complete skeletons have been found. Seven clusters of fossil were found in three different levels of chambers (lower, intermediate, and upper level chambers). Most of the fossils were recovered from the intermediate level chamber except for one cluster from the upper level chamber and another from the lower level chamber.

The fossils contain a highly diversified fauna ranging from large carnivores and herbivores to small fossils like bats. The material found includes: common wild pig (Sus scrofa), bear (Ursidae- gen.et sp. indet.), macaque (Macaca sp. indet.), primates (non-human hominoid), ?domestic dog (Canis familiaris), Southern serow (Capricornis sumatraensis), red muntjac (Muntiacus muntjak), sambar deer (Cervus unicolor), Asian tapir (Tapirus indicus), rhinocerotidae (gen. et sp. indet.), bovidae (gen. et sp. indet.), Asiatic brush-tailed porcupine (Atherurus macrourus), Malayan porcupine (Hystrix brachyura), and unidentifiable fragmented bones.

The fossils appeared to have been washed in by a prehistoric flood or brought in by other animals with gnaw marks by porcupine animals found on the roots of one pig tooth collected from this cave.

The fossil assemblage is suggestive of a Middle Pleistocene age that is supported by preliminary uranium-series dating done on the flowstones encasing the fossils. This date would be confirmed by red thermoluminescene dating of the sediments currently being attempted at Macquarie University, Australia by Dr. Kira Westaway.

Thermal maturity assessment of Tertiary coal-bearing sequence of the West Middle Block of the Pinangah Coal Field, Sabah, Malaysia

Fatin Liyana Alias*, Wan Hasiah Abdullah, Ralph L. Kugler & Mustaffa Kamal Shuib

Department of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur *Email Address: fatinliyana87@yahoo.com

The coal-bearing sandstone and shale sequence of the Early to Middle Miocene Tanjong Formation in the West Middle Block of the Pinangah Coal Field, central Sabah, was evaluated to determine thermal maturity based on vitrinite reflectance and n-alkane distributions. The Tanjong Formation was described by Collenette (1965) as a thick succession of sandstone, mudstone and siltstone with lenses of conglomerate in the Pensiangan and Upper Kinabatangan Rivers in central of Sabah. The depositional environment of the Tanjong Formation is interpreted as brackish water (Collenette, 1965), based on limited biostratigraphy data. Thirteen coal and four carbonaceous shale outcrops along river banks were described and sampled. Most coals were classified as bright coals which are characterized by alternating lustrous and dull bands of black coal. Petrographic analyses of the coals were performed under reflected white light and UV light excitation at 50x objective magnification. Coal petrology or microscopy involves the study of maceral or organic components visible in transparent thin sections or polished blocks or fragmented coal particles (Stach, 1975). The coals are dominated by vitrinite with common occurrence of liptinite macerals. Vitrinite reflectance measurements carried out on the coals under oil immersion record values between 0.45 and 0.55%Ro. Based on vitrinite reflectance, the coals are ranked as sub-bituminous B-A and high volatile bituminous C, and are considered thermally immature to early mature for petroleum generation, as oil generation typically commence at about 0.60%. The thermal immaturity of the coal samples is supported by the high CPI (carbon preference index) values. This is further confirmed by the distinct odd to even predominance (OEP) in the gas chromatograms of saturated hydrocarbon fractions.

References

Collenete, P., 1965. The Geology and Mineral Resources of the Pensiangan and Upper Kinabatangan Area Sabah, Malaysia. Vincent Kiew Fah San, Government Printer.

Stach, E., Mackowsky, M.Th., Teicmuller, R., 1975. Stach's Textbook of Coal Petrology, Gebruder Borntraeger.

Paper P42

Kewujudan bivalvia Alatochonchidae di dalam batu kapur Bukit Biwah, Tasik Kenyir Terengganu

CHE AZIZ ALI*, MOHD SHAFEEA LEMAN & KAMAL ROSLAN MOHAMED

Program Geologi, Pusat pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Alamat Emel: che@ukm.my

Batu kapur Bukit Biwah telah banyak dikaji dari aspek sedimentologi dan paleontologinya. Namun demikian baru-baru ini satu spesies bivalvia daripada famili Alatochonchidae didapati wujud di dalam lapisan bahagian bawah jujukan batu kapur di Bukit Biwah Terengganu. Fosil ini wujud sebagai serpihan kerangka yang bersaiz mega tertabur di dalam sedimen kapur yang berbutir halus. Wujud bersama taburan kerangka bivalia ini ialah fusulina dan karang. Di Malaysia setakat ini fosil yang sama pernah dilaporkan dari lapisan H.S Lee di Ipoh. Species bivalvia ini masih tidak diketahui namun demikian ia mungkin sama dengan fosil dari Ipoh tersebut. Organisma ini merupakan hidupan laut cetek tropika dan setakat ini pernah dilaporkan ditemui dibeberapa tempat di dunia dari Yugoslavia, Turki, Algeria, Afghanistan, Malaysia dan Jepun. Kewujudan fosil ini yang sangat langka memberikan nilai saintifik yang sangat tinggi dan menjadikan salah satu sumber geowarisan yang bernilai sangat tinggi di Tasik Kenyir.

Paper P43

Penemuan radiolaria berusia Perm dari kawasan sekitar Pos Belau, Ulu Kelantan

Muhammad Ashahadi Dzulkafli¹, Basir Jasin² & Mohd Shafeea Leman^{1,2}

¹Institut Alam Sekitar dan Pembangunan LESTARI, ²Program Geologi, Pusat pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Alamat Emel: azurit_30786@yahoo.com

Satu singkapan batuan rijang telah ditemui di sebelah timur dan barat cerun potongan jalan raya di kilometer 38, lebuhraya Gua Musang-Cameron Highland berhampiran Pos Belau pada kedudukan 4°45.056′ utara dan 101°45.358′ timur. Batuan rijang ini memperlihatkan satah-satah perlapisan yang jelas dari bahagian bawah hingga atas teres potongan cerun. Lima log batuan telah dibina dan sebanyak 65 sampel batuan rijang telah diambil dari singkapan sebelah timur. Berdasarkan kajian lapangan, tiga fasies litologi telah dikenalpasti iaitu fasies selanglapis batu pasir dengan batu lumpur sama tebal, fasies selanglapis rijang dengan batu lumpur dominan dan fasies rijang. Fasies selanglapis batu pasir dengan batu lumpur terletak di bahagian paling bawah jujukan batuan. Batu pasir dan batu lumpur ini mempunyai ketebalan 15 cm hingga 25 cm. Dalam fasies selanglapis rijang dengan batu lumpur dominan, lapisan rijang mempunyai ketebalan antara 10 cm hingga 70 cm, manakala batu lumpur berketebalan 10cm hingga 40cm. Fasies rijang pula dicirikan oleh rijang berfosil radiolaria, berwarna kelabu kemerahan, berperlapisan setebal antara 0.5 cm hingga 20 cm. Analisis mikropaleontologi daripada 11 sampel yang dipilih telah menghasilkan beberapa spesies fosil termasuklah Pseudoalbaillella lomentaria Ishiga dan Imoto, Pseudoalbaillella sakmarensis Kozur, Pseudoalbaillella scalprata Holdsworth dan Jones m. scalprata Ishiga, Pseudoalbaillella sp., Pseudoalbaillella sp. aff. Ps. longicornis Ishiga dan Imoto, Nazarovella phlogides Wang sp. nov., Latentibifistula sp., Latentifistula sp. aff. L. crux Nazarov dan Ormiston, Entactinia cf. itsukaichiensis Sashida dan Tonishi, Stigmosphaerostylus cf. pycnoclada Nazarov dan Ormiston, Stigmosphaerostylus sp.cf. S. itsukaichiensis Sashida dan Tonishi, Quinqueremis robusta Nazarov dan Ormiston, Copicyntra sp., Tetraspongodiscus stauracantus Feng n. sp., Latentibifistula aff. asperspongiosa Sashida dan Tonishi, Ruzhencevispongus sp., Ruzhencevispongus uralicus Kozur dan Mostler, Palaeolithocyclia pilata Feng n. sp., Palaeolithocyclia platta Feng n. sp., dan Spongosphaeradiscus shaiwaensis Wang. Himpunan fosil ini secara umumnya mencadangkan usia Perm kepada batuan rijang di kawasan kajian.

Paper P44

Pemetaan dan analisis lineamen menggunakan imej PCA SPOT 5 di bahagian utara Maran, Pahang

SHERYL LIAW HUI HUNG* & JUHARI MAT AKHIR

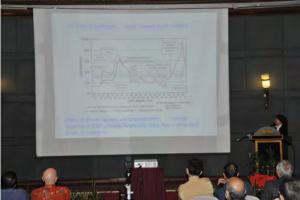
Program Geologi, Pusat pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor *Alamat Emel: sheryllhh@yahoo.com

Lineamen ialah fitur lurus ringkas atau komposit pada permukaan yang boleh dipetakan. Analisis komponen utama atau PCA adalah kaedah analisis pembolehubah multi yang bertujuan memperkecilkan dimensi pembolehubah asal sehingga memperolehi pembolehubah baru (komponen utama) yang saling tidak berkorelasi serta menyimpan sebahagian besar informasi yang terkandung dalam pembolehubah asal. Objektif kajian ini dijalankan adalah untuk memetakan lineamen daripada imej PCA SPOT 5 dan membuat analisis serta korelasi sesar antara peta lineamen yang terhasil dengan peta geologi. Kajian ini menggunakan imej SPOT 5 bagi kawasan seluas 2400 km² yang terletak di bahagian utara Maran, Pahang. Secara umumnya, kawasan kajian terdiri daripada batuan sedimen Paleozoik Atas (Lapisan Seri Jaya), Mesozoik (Formasi Semantan dan Kumpulan Tembeling) dan rejahan granitoid. Sebelum pengekstrakan lineamen dilakukan, imej SPOT 5 diproses secara digit terlebih dahulu yang merangkumi pembetulan geometri, pembetulan radiometri, penonjolan kontras dan penurasan berarah serta tidak berarah bagi meningkatkan mutu imej. Kajian ini telah menggunakan kaedah PCA dalam penghasilan imej PCA 1 SPOT 5, penurasan imej mengikut empat arah utama, penggabungan hasil turasan imej mengikut arah dengan menggunakan konsep PCA dan padanan dilakukan antara peta lineamen akhir yang dihasilkan daripada kajian ini dengan peta geologi terdahulu untuk mendapatkan peratusan padanan. Hasil kajian menunjukkan imej PCA 1 SPOT 5 mengandungi 76.16 % maklumat dan sebanyak 889 lineamen dengan jumlah panjang 2350 km dipetakan daripada imej PCA 1. Daripada kajian ini turut didapati arah utama linemen di kawasan kajian adalah BL-TG dan kajian ini berjaya memetakan 11 lineamen major yang mungkin merupakan sesar yang belum dipetakan dan juga telah melanjutkan panjang 1 sesar yang terdapat dalam peta sesar yang diterbitkan.. Selain itu, kajian ini turut memperlihatkan korelasi yang baik antara peta lineamen akhir yang dihasilkan dengan peta sesar yang diterbitkan kerana analisis menunjukkan terdapat 60.69 % padanan antara peta lineamen akhir yang dihasilkan dengan peta sesar yang diterbitkan.

PERTEMUAN PERSATUAN (MEETINGS OF THE SOCIETY)

Lineament mapping and analysis using PCA SPOT 5 image at northern Maran, Pahang

Lineament is a simple or composite straight feature on the earth surface that can be mapped. Principal component analysis (PCA) is a method of analysis on multi variable to minimize the dimension of original variables to obtain a new variable (main component) that is not correlated among each other and contains most information as compared to the original variable. The objective of this research is to map and analysis lineaments from PCA SPOT 5 image and to do fault analysis and correlation between final lineament map that is produced and published fault map. This research uses SPOT 5 image with area of 2400 km² that is located at northern Maran, Pahang. Generally, the study area consists of Upper Paleozoic sediments (Seri Jaya Bed), Mesozoic (Semantan Formation and Tembeling Formation) and granitoid intrusive. Before the extraction of lineament, SPOT 5 image is processed digitally which includes geometric correction, radiometric correction, contrast enhancement and has gone through directional filtering and non directional filtering to increase the quality of image. Methods that is used in this research include the application of PCA method in producing PCA 1 SPOT 5 image, filtering of produced image in four main directions, combining of filtered images according to the direction of filter by using the concept of PCA and matching method is used to find out the percentage of matching between final lineament map and published fault map. Result from this research shows PCA 1 SPOT 5 image contains 76.16 % information and 889 lineaments with a total length of 2350 km is mapped from PCA 1 image. Besides, the main direction of lineament at Northern Maran that is obtained from this research is in NW-SE direction and this research manages to map 11 major lineaments besides elongate 1 lineament that is mapped in the published fault map. The result also shows there is 60.69% of matching between final lineament map and published fault map which shows high correlation between the final lineament map and published fault map.



MALAM AIRTANAH 2010

Malam Airtanah 2010 was held on Wed. 26th May, 2010, at the Dept. of Geology, Univ. Malaya, K.L. It featured three speakers, namely: Sdr Mohd Nazan Awang (JKR/JMG), Sdr. Azuhan Mohamed (Sime Darby) and Sdr. Saim Suratman (NAHRIM).

Sdr Nazan presented a case study on pumping test of the Olak Lempit well in Kuala Langat. This high-yield well was constructed and investigated during the last water crisis, but has not been utilized when the water crisis ended.

Sdr Azuhan gave a broad and comprehensive account of the groundwater industry and its prospects, including earlier rejection of groundwater due to failures of previous projects, current scenario and future prospects. Groundwater professionals essential to the industry would include hydrogeologists, geophysicists, civil/water engineers, chemists, etc.

Sdr Saim discussed groundwater contamination associated with existing landfill sites in Selangor. As most of the landfill sites are un-engineered open-dumps (in contrast to sanitary landfill), contamination of groundwater and river water by leachate emanating from the landfill sites is a serious problem indeed.

As usual, there were lively discussions at the end of the presentations.

BERITA-BERITA PERSATUAN NEWS OF THE SOCIETY

KEAHLIAN MEMBERSHIP

Ahli Penuh / Full Member

1. Chaw Li Min (No I/C: 850528 – 06 – 5330)

Ahli Pelajar / Student Member

- 1. Foo Yuan Han (No I/C: 850713 08 5851)
- 2. Mohd Asraf bin Hj Khamis (No I/C: 890415 01 5077)
- 3. Siti Fathiah bt Mat Nasir (No I/C : 900517 14 5506)
- 4. Ahmad Syafiq bin Noh (No I/C: 870218 14 6643)
- 5. Mohammad Khairul Aliff bin Abdullah (No I/C: 900117 02 5441)
- 6. Mohamad Hanif bin Kamal Roslan (No I/C: 901013 03 6247

Ahli Bersekutu / Associate Member

1. Mohd Khairi bin Kamarudin (No I/C : 790901 – 14 – 5637)

BERITA-BERITA LAIN OTHER NEWS

Talk organized by Total E&P Malaysia and KL Explorationists:

Paul Tapponnier (Earth Observatory Singapore): "Earthquake & Tsunami Hazard in Southeast Asia – Where do we Stand?"

26th May 2010, 2:30pm

Few who have studied South East Asian geology would be unfamiliar with the name of Paul Tapponnier. His famous paper (Tapponnier et al., 1982) introduced the idea that the collision of India with the Eurasian continent resulted in the extrusion of large areas of China and Southeast Asia to the east and south, via major regional strikeslip faults. This idea was illustrated by a model consisting of a block of plasticene (representing the Eurasian Plate) and a rigid block of wood, representing India.

Dr. Tapponnier is currently with the Earth Observatory Singapore, affiliated with Nanyang Technical University. He is still avidly studying active faulting in the region, and was invited by Total E&P Malaysia to give two talks in Kuala Lumpur. In this first talk, which was jointly organized by KL Explorationists, he talked about ongoing research into the current state of stress of major faults in Southeast Asia, and the degree of imminent danger from earthquakes and tsunami posed by these faults. The talk covered the subduction related thrust fault of the Sunda Trench and the Andaman Sea, the major regional strike-slip faults that run through Sumatra and Myanmar, and major thrust faults in the Himalaya.

The movement of major faults can be studied by integrating careful field observation, geochronology, and the study of seismic records and earthquakes in the historical record before the advent of seismic records. Movements along faults can be traced and measured by the dating of fault scarps (complicated by the additive nature thereof) and the displacement of geology and physical features along strike slip faults. Movement in one segment of a fault will change the stress regime in neighboring segments, resulting in additional quakes.

In the case of the Sunda Trench, movement is vertical, and can be traced using coral "micro-atolls" – heads of coral that grow upwards until they meet the ocean surface, at which point they grow sideways rather than up. These micro-atolls are found on islets and banks off the Sumatran coast. Similar islets were observed to have been inundated after the tsunamigenic magnitude 9.1 earthquake off Banda Aceh on 26th December, 2004. As stresses build up on the fault, these islets rise, when the stresses are released, they become inundated. The history of exposure and inundation in the area off the city of Padang, located halfway down the west coast of Sumatra, shows that that segment of the fault is in danger of imminent movement.

In conclusion, Dr. Tapponnier showed a map, with the fault zones marked and ranked in terms of imminent seismic hazard. The ones most likely to fail in the near future are the strike-slip Sagaeng Fault in central Myanmar and the segment of the Sunda Trench subduction zone off Padang. A major quake off Padang will likely be tsunamigenic, and given that Padang is densely populated, this will have the makings of a major disaster. Tsunami generated here may reach Australia, as well as shores on the other side of the Indian Ocean.

Nur Iskandar Taib

Oceania invites you to the

34th International Geological Congress (IGC):

AUSTRALIA 2012

Unearthing Our Past And Future – Resourcing Tomorrow

Brisbane Convention and Exhibition Centre Queensland

5 - 10 August, 2012 | www.34igc.org

34TH IGC CIRCULARS

General distribution of this and subsequent Circulars for the 34th IGC is by email. Please feel free to forward it to others who may be interested. If necessary, hard copies can be supplied in limited numbers on request through the website: www.34igc.org or by contacting Carillon Conference Management Pty Ltd. by email: info@34igc.org, or by post: PO Box 177, Red Hill, 4059, Queensland, Australia.

The Second Circular is scheduled for electronic distribution in April 2011.

UPCOMING EVENTS

August 2-4, 2010: Volcaniclastic Rocks – Classification, Properties, Genesis and Depositional Settings, Vienna, Austria. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www.hoteng.com

August 2-6, 2010: Advanced Reservoir Simulation Technologies, Vienna, Austria. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www.hoteng.com

August 2-6, 2010: Advanced Seismic Stratigraphy: A Sequence – Wavelet Analysis Exploration – Exploitation Workshop, Singapore. Tel: 603 21684751; email: apenquiries@petroskills.com

August 5-15, 1012: 34th International Geological Congress, Brisbane, Australia. Contact: Dr. Ian Lambert, Geoscience Australia. Tel: +61 2 62499556; Fax: +61 2 6249983; email: ian.lambert@ga.gov.au;

August 27-29, 2010: AAPG 30th Annual Leadership Days, Post Oak Lodge, Tulsa, Oklahoma, USA. Contact: Richard D Fritz, email: tcurry@aapg.com

August 30-September 3, 2010: 6th Quadrennial Conference GeoSciEd VI of the International Geoscience Education Organisation (IGEO), Johannesburg, South Africa. Email: witsqeoutreach@gmail.com/slab@internode.on.net; website: // web.wits.ac.2a/newsroom/conferences/geoscied/geosciedhome:htm

September 5-10, 2010: 11th IAEG International Congress, New Zealand. Website: www.iaeg2010.com

September 12-15, 2010: AAPG International Conference and Exhibition, Calgary, Alberta, Canada. Contact: AAPG Convention Dept., P. O. Box 979, Tulsa, Oklahoma 74101-0979. Tel: 918 560 2617; Fax: 918 560 2684; email: convene@aapg.org; website: www.aapg.org/calgary

September 13-17, 2010: Carbonate Reservoirs, London, UK. Tel: 603 21684751; email: ap-enquiries@petroskills.com

September 13-17, 2010: Seismic Interpretation, Kuala Lumpur, Malaysia. Tel: 603 21684751; email: apenquiries@petroskills.com

September 13-17, 2010: Petroleum Systems Modelling for Exploration Risk Assessments, Vienna, Austria. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www.hoteng.com

September 26-October 2, 2010: Complex Carbonate Reservoirs: The Role of Fracturing, Facies and Tectonics, Naples, Italy. Contact: education@aapg.org; Tel: 918 560 2650; website: AAPG website.

September 27-28, 2010: Development Geology. Contact: Easwaran Kanason, Petroedge, Tel: +65 67419927; email: easwaran@asiaedge.net

September 27-October 1, 2010: Petroleum Geochemistry: Tools for Effective Exploration and Development, London, UK. Tel: 603 21684751; email: ap-enquiries@petroskills.com

September 27-October 1, 2010: Petroleum Geostatistics – Integrating Data for Reservoir Modelling and Simulation, Vienna, Austria. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng. com; website: www.hoteng.com

October 10-13, 2010: The Mena Oil and Gas Exhibition and Conference 2010. The 1st International trade show for the oil and gas serving the Mena region, Amman Exhibitions Park, Amman, Jordan. Contact: Nafees Ahmed, Orange Fairs & Events, P.O Box 111164, Dubai; Tel: 00971 4 2988144, 2987730; Fax: 00974 2987886; email: nafees@orangefairs.com; website: www.orangefairs.com

October 10-14, 2010: Integrated Petrophysics for Reservoir Characterisation, Dubai, UAE. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www.hoteng.com

October 11-15, 2010: Production Geology for Other Disciplines, Kuala Lumpur, Malaysia. Tel: 603 21684751; email: ap-enquiries@petroskills.com

October 11-15, 2010: Deep-water Turbidite Depositional Systems and Reservoirs, London, UK. Tel: 603 21684751; email: ap-enquiries@petroskills. com

October 12-14, 2010: Deepwater Southeast Asia Congress 2010, Le Meridien, Kuala Lumpur, Malaysia. Contact: molly.mei@neoventurecorp.com, website: www.neoventurecorp.com/2010/dsac

October 17-21, 2010: Carbonate and Fracture Petrophysics, Dubai, UAE. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www.hoteng.com

October 18-22, 2010: Wellsite and Operations Geology, Vienna, Austria. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www.hoteng.com

October 18-22, 2010: Compressional and Transpressional Structural Styles, London, UK. Tel: 603 21684751; email: ap-enquiries@petroskills.com

October 19-22, 2010: Oils and Fats International Congress 2010 in conjunction with Oils and Fats International Asia 2010: Oils and Fats Industry:

Challenges and Innovative Solutions, Kuala Lumpur, Malaysia. Contact: OFIC 2010 Secretariat c/o MOSTA, C-3A-10, 4th Floor, Block C, Damansara Intan, 47400 Petaling Jaya, Selangor, Malaysia. Tel: 603 71182062/2064; Fax: 603 71182063; email: secretariat@mosta.org.my; website: www.mosta.org.my

October, 25-29, 2010: Structural Styles in Petroleum Exploration, Kuala Lumpur, Malaysia. Tel: 603 21684751; email: ap-enquiries@petroskills.com

October, 25-29, 2010: Application of Structural Geology in Seismic Interpretation, Kuala Lumpur, Malaysia. Contact: Tel: +65 67419927; email: info@asiaedge.net; website: www.petroedgeasia.net

October, 27-29, 2010: Pore Pressure Prediction: Special Focus – Asia Pacific, Singapore. Contact: AAPG, P.O. Bo 979, Tulsa, Okla 74101-0979, USA; email: education@aapg.org

October 27-29, 2010: Geosciences Technology Workshop (GTW): Pore Pressure and Related Issues: Special Focus – Asia Pacific, Singapore. Contact: Adrienne Pereira, Tel: 65 96536728; email: apereira@apg.com; website: www.aapg.org

November 1-5, 2010: Production Logging and Reservoir Monitoring, Kuala Lumpur, Malaysia. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www.hoteng.com

November 1-5, 2010: Seismic Velocities and Depth Conversion, Kuala Lumpur, Malaysia. Tel: 603 21684751; email: ap-enquiries@petroskills.com

November 5-7, 2010: 2nd International Renewable Energy Congress (IREC), 2010, Sousse, Tunisia. Contact: irec@cmerp.net; website: www.irec.cmerp.net

November 7-11, 2010: Introduction to Open Hole Log Analysis, Dubai, UAE. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www.hoteng.com

November 7-11, 2010: Reservoir Engineering for Non-Reservoir Engineers, Dubai, UAE. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www.hoteng.com

November 8-12, 2010: Basin Analysis and Petroleum Systems, Vienna, Austria. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www.hoteng.com

November 8-12, 2010: Special Core Analysis, Vienna, Austria. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www. hoteng.com

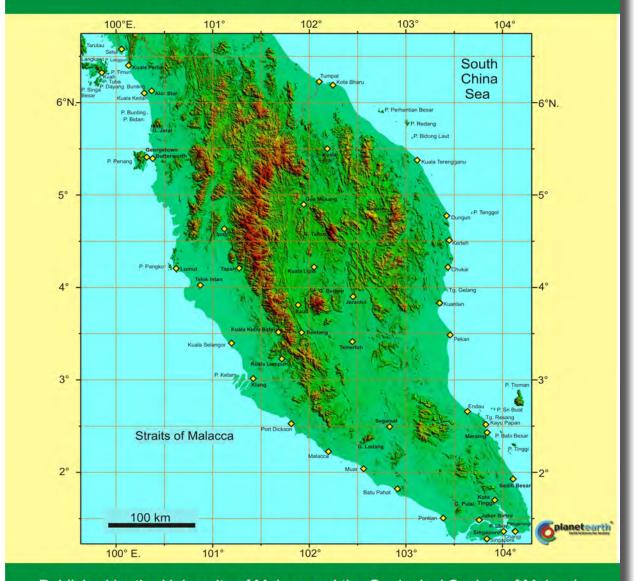
November 8-12, 2010: Petroleum Geomechanics, Kuala Lumpur, Malaysia. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www.hoteng.com

November 15-18, 2010: 1st International Congress & Exposition of Oil Field Chemicals – 2010 (OFC-2010), Beijing, China. Contact: Ms Lucy Wang, Organizing Committee of OFC-2010, Dalian BITeomics, Inc. 26 Gaoneng St., F4 Dalian Hightech Zone, Dalian, LN 116025, China, Tel: 01186 411 84799609 – 801; Fax: 01186 411 84799629; email: lucy@bitconferences.com; website: www.bitpetrobio.com/ofc2010/

November 25-26, 2010: Deepwater Turbidites. Contact: Easwaran Kanason, Petroedge, Tel: +65 67419927; email: easwaran@asiaedge.net

November 29-December 3, 2010: Pore Pressure, Fracture Pressure and Wellbore Stability Management, Vienna, Austria. Tel: +43 3842 43053-33; Fax: +43 3842 430531; email: training@hoteng.com; website: www.hoteng.com

November 29-December 3, 2010: Clastic Exploration and Reservoir Sedimentology.Contact: Easwaran Kanason, Petroedge, Tel: +65 67419927; email: easwaran@asiaedge.net


December 7-10, 2010: The 2nd South Asian Geosciences Conference & Exhibition, India Expo Cente & Mart, Greater Noida, New Delhi. Contact: Tel: 44 207 840 2136; Fax: 44 207 840 2119; email: aridgway@oesallworld.com; website: www. allworldexhibitions.com

December 14-15, 2010: An International Symposium on Forensic Approach to Analysis of Geohazard Problems, Mumbia, India. Contact: Prof. G. L. Sivakumar Babu, Organizing Secretary, Dept. of Civil Engineering, Indian Institute of Science, Bangalore, 560012, India; Tel: 91 80 2293 3124/2360; Fax: 91 80 2360 0404; email: gls@civil.iisc.ernet.in; website: www.civil.iitb.ac.n/~igc2010

January 8-14, 2011: Colloquium of African Geology, University of Johannesburg, South Africa. Contact: Dr Hassina Mouri, Tel: 27 11 559 4706; Fax: 27 11 559 4702; Email: hmouri@uj.ac.za; website: www.cag23.co.za

GEOLOGY OF PENINSULAR MALAYSIA

Editors: C. S. Hutchison and D. N. K. Tan

Published by the University of Malaya and the Geological Society of Malaysia

Sponsored by Murphy Oil Corporation and the University of Malaya

Geologyof Peninsular Malaysia (2009) Edited by C.S. Hutchison & D.N.K. Tan.

Hardcover, 479 pages. Inclusive of Geological Map of Peninsular Malaysia, scale 1 000 000.

Price (excluding postage): Member RM150.00; Student Member RM70.00; Non-Member RM200.00

For overseas mail order please send your enquiry to : geologicalsociety@gmail.com

A review of this book by Dr. Ian Metcalfe has been published in Journal of Asian Earth Sciences, Volume 38 (3-4), 173-174.

GEOLOGICAL SOCIETY OF MALAYSIA PUBLICATIONS

- Bulletin 2 (Dec 1968). 152 p. Bibliography and Index of the Geology of West Malaysia and Singapore by D.J. Gobbett. Price: RM5.00.
- Bulletin 3 (Mar 1970). 146 p. Papers in Geomorphology and Stratigraphy (with Bibliography supplement). Edited by P.H. Stauffer. Price: RM5.00.
- Bulletin 4 (Jun 1971). 100 p. Papers in Petrology, Structure and Economic Geology. Edited by P.H. Stauffer. Price: RM5.00.
- Bulletin 5 (Feb 1973). 70 p. The Search for Tungsten Deposits by K.F.G. Hosking. Price: RM5.00.
- Bulletin 6 (Jul 1973). 334 p. Proceedings, Regional Conference on the Geology of Southeast Asia. A Collection of papers, Kuala Lumpur, March, 1972. Edited by B.K. Tan. Price: RM5.00.
- Bulletin 7 (Jun 1974). 138 p. A collection of papers on geology. Edited by B.K. Tan. Price RM5.00.
- Bulletin 13 (Dec 1980). 111 p. A collection of papers on geology of Malaysia and Thailand. Edited by G.H. Teh. Price RM5.00.
- Bulletin 17 (Dec 1984). 371 p. A collection of papers on geology. Edited by G.H. Teh. Price: RM10.00.
- Bulletin 18 (Nov 1985) 209 p. Special issue on Petroleum Geology. Edited by G.H. Teh. & S. Paramanathan. Price: RM15.00.
- Bulletins 19 (Apr 1986) & 20 (Aug 1986). GEOSEA V Proceedings Vols. 1 & 11. Fifth Regional Congress on Geology, Mineral and Energy Resources of SE Asia. Kuala Lumpur, 9-13 April 1984. Edited by G.H. Teh & S. Paramanathan. Price for both bulletins 19 & 20: Members: RM30.00: Non-members: RM60.00
- Bulletin 21 (Dec 1987). 271 p. Special issue on Petroleum Geology Vol. 11. Edited by G.H. Teh. Price: RM20.00.
- Bulletin 22 (Dec 1988). 272 p. Special issue on Petroleum Geology Vol. 111. Edited by G.H. Teh. Price: RM20.00.
- Bulletin 23 (Aug 1989). 215 p. A collection of papers on the geology of Malaysia, Thailand and Burma. Edited by G.H. Teh. Price: RM10.00.
- Bulletin 24 (Oct 1989). 199 p. A collection of papers presented at GSM Annual Geological Conference 1987 & 1988. Edited by G.H. Teh. Price: RM10.00.
- Bulletin 25 (Dec 1989). 161 p. Special issue on Petroleum Geology Vol. IV. Edited by G.H. Teh. Price: RM20.00.
- Bulletin 26 (Apr 1990). 223 p. A collection of papers presented at GSM Annual Geological Conference 1989 and others. Edited by G.H. Teh. Price: RM10.00.
- Bulletin 27 (Nov 1990). 292 p. Special issue on Petroleum Geology Vol. V. Edited by G.H. Teh. Price: RM20.00.
- Bulletin 28 (Nov 1991). 292 p. Special issue on Petroleum Geology Vol. VI. Edited by G.H. Teh. Price: RM20.00.
- Bulletin 29 (Jul 1991). 255 p. A collection of papers presented at GSM Annual Geological Conference 1990 and others. Edited by G.H. Teh. Price: RM10.00
- Bulletin 30 (Apr 1992). 90 p. Annotated bibliography of the geology of the South China Sea and adjacent parts of Borneo by N.S. Haile. Edited by G.H. Teh. Price: RM10.00.
- Bulletin 31 (Jul 1992). 176 p. A collection of papers presented at GSM Annual Geological Conference 1991 and others. Edited by G.H. Teh. Price: RM10 00
- **Bulletin 32** (Nov 1992). 283 p. Special issue on Petroleum Geology Vol. VII. Edited by G.H. Teh. Price: RM30.00.
- Bulletin 33 (Nov 1993). 419 p. Proceedings Symposium on Tectonic Framework and Energy Resources of the Western Margin of the Pacific Basin. Edited by G.H. Teh. Price: RM40.00.
- Bulletin 34 (Dec 1993). 181 p. Bibliography and Index Publications of the Geological Society of Malaysia 1967-1993. Compiled by T.F. Ng. Edited by G.H. Teh. Price: RM20.00.
- Bulletin 36 (Dec 1994). 186 p. Special issue on Petroleum Geology Vol. VIII. Edited by G.H. Teh. Price: RM50.00.
- Bulletin 37 (Jul 1995). 506 p. Proceedings AAPG-GSM International Conference 1994. Southeast Asian Basins: Oil and Gas for the 21st Century. Edited by G.H. Teh. Price: RM60.00.
- Bulletin 38 (Dec 1995). 190 p. A collection of papers presented at GSM Annual Geological Conference 1994 and others. Edited by G.H. Teh. Price: RM30.00.

- Bulletin 40 (Jul 1997). 247 p. A collection of papers presented at GSM Annual Geological Conference 1996 and others. Edited by G.H. Teh. Price: RM30.00.
- Bulletin 42 (Dec 1998). 268 p. Papers from Petroleum Geology Conference 1997, Seminar on Tertiary Basins of Peninsular Malaysia and others. Edited by G.H. Teh. Price: RM50.00.
- Bulletin 43 (Dec 1999). 698 p. Papers from GEOSEA '98 (Ninth Regional Congress on Geology, Mineral and Energy Resources of Southeast Asia). Edited by G.H. Teh. Price: RM70.00.
- Bulletin 44 (July 2000). 178 p. A collection of papers from Annual Geological Conference 1999. Western Belt & Paleozoic of Peninsular Malaysia Seminar 1999 & others. Edited by G.H. Teh. Price: RM30.00
- Bulletin 45 (May 2002). 375 p. Annual Geological Conference 2002. Conference Issue. Edited by G.H.Teh, Ismail Yusoff, Azman Abdul Ghani & T.F. Ng. Price: RM50.00.
- Bulletin 47 (Dec 2003). 179 p. Petroleum Ceology Conference & Exhibition 2002. Edited by G.H. Teh. Price: RM30.00.
- Bulletin 49 (April 2006). 167 p. Collection of Geological Papers. Edited by K.K. Liew, Nur Iskandar Taib & T.F. Ng. Price: RM30.00.
- Bulletin 50 (May 2007). 160 p. Bibliography and Index of GSM Publications 1994 – 2004. Compiled by Robert B. Tate. Price: RM30.00
- Bulletin 51 (2005). 199 p. Annual Geological Conference 2005 Conference Issue. Edited by Nur Iskandar Taib. Price: RM30.00
- Bulletin 52 (June 2006). 135 p. Collection of Geological Papers. Edited by Nur Iskandar Taib. Price: RM30.00.
- Bulletin 53 (June 2007). 128 p. Collection of Geological Papers. Edited by T.F. Ng, Nur Iskandar Taib & Joy J. Pereira. Price: RM30.00.
- Bulletin 54 (November 2008). 169 p. Collection of Geological Papers. Edited by T.F. Ng, Nur Iskandar Taib & Samsudin Hj Taib. Price: RM30.00.
- Bulletin 55 (November 2009). 100 p. Collection of Geological Papers. Edited by T.F. Ng & Y.L. Lau. 100 p. Price: RM20.00.
- Abstracts of papers (1972). Regional Conference on the Geology of Southeast Asia. Kuala Lumpur, 1972. 64 p. 8 figs. 3 tables, many extended abstracts. Edited by N.S. Haile. Price: RM2.00.
- Warta Geologi (Newsletter of the Geological Society of Malaysia). Price: RM5.00 per bimonthly issue from July 1966.
- Stratigraphic Lexicon of Malaysia (2004). 162 p. By Lee Chai Peng, Mohd. Shafeea Leman, Kamaludin Hassan, Bahari Md. Nasib & Roshidah Karim. Price: RM30.00.
- Geological Evolution of Southeast Asia (2007) (Second Edition) 433 p. by C. S. Hutchison. Price: RM100.00; Student :RM50.00.
- Common Rocks of Malaysia (Colour Poster). Price: Member: RM8.00; Non-Member: RM10.00; Student: RM7.00.
- Proceedings Annual Geological Conference 2000. 435 p. Edited by G.H. Teh, Joy J. Pereira and T.F. Ng. Price: RM60.00.
- Proceedings Annual Geological Conference 2001. 320 p. Edited by G.H. Teh, Mohd. Shafeea Leman and T.F. Ng. Price: RM50.00.
- Geology of Borneo Island (2001) (CD, Map (2 sheets) and explanatory notes. Compiled by Robert B. Tate. Price: RM60.00.
- Geology of Peninsular Malaysia (2009) 479 p. Hardcover. Edited by C.S. Hutchison & D.N.K. Tan. Inclusive of Geological Map of Peninsular Malaysia. Price: Member RM150.00; Student Member RM70.00; Non-Member RM200.00
- Geological Map of Peninsular Malaysia (2008). Scale 1:1 000 000. Price: RM50.00; Student: RM20.00.

All prices quoted are not inclusive of postage. Please write in for details on postage. Allow 8-10 weeks for delivery. For orders, please write to the Society and you will be invoiced. Cheques, money orders and bank drafs must accompany all orders.

Orders should be addressed to:

Geological Society of Malaysia, c/o Department of Geology,University of Malaya,50603 Kuala Lumpur, MALAYSIA Tel: 603-79577036, Fax: 603-79563900 E-mail: geologicalsociety@gmail.com

Geological Society of Malaysia Publications

GENERAL POLICY

Papers should be as concise as possible. They may include original results of basic, applied and policy research of national or international significance, current reviews, or discussions on techniques, research programs, organisations, information, or national and international policies in geoscience.

SUBMISSION OF PAPERS

Only papers that have not been published elsewhere will be considered for publication. Authors must agree not to publish elsewhere a paper submitted and accepted. All papers will be subjected to review by two or more reviewers. Authors wishing to include published and unmodified figures or text passages are required to obtain permission from the copyright owner(s). Authors of English papers are strongly urged to have their manuscript edited for language before submission by a person whose first language is English.

The Editor reserves the right to reject all or any part of the paper submitted. The Geological Society of Malaysia assumes no responsibility for statements made by authors.

Three (3) original copies of the paper should be submitted to:

The Editor, Geological Society of Malaysia c/o Department of Geology University of Malaya 50603 Kuala Lumpur, Malaysia Tel: (603) 7957 7036

Fax: (603) 7957 7036 Fax: (603) 7956 3900

Email: geologicalsociety@gmail.com

MANUSCRIPT

The paper can be written in Bahasa Malaysia (Malay) or English. For English papers, use either British or American spelling but not a combination of both. The paper should be checked thoroughly for spelling and grammar. The manuscript must be printed at 1.5 spacing in a single column on one side of A4 paper. All pages should be numbered. Length of paper should be between 4,000 to 6,000 words (8 to 12 pages), excluding tables and illustrations. Metric units should be used and all non-standard symbols, abbreviations and acronyms must be defined.

TITLE

Title must be informative and reflects the content of the paper. Title in Malay should include an English translation. It should be concise (less than 20 words). Avoid using abbreviation in the title.

AUTHOR'S ADDRESS

Addresses of all authors must be provided. The addresses should be sufficient for correspondence. Please include email address, telephone and fax of the corresponding author.

ABSTRACT

Abstract in both Malay and English, each in one paragraph and should not exceed 300 words. It should clearly identify the subject matter, results obtained, interpretations discussed and conclusions reached.

KEYWORDS

Please include 3 to 8 keywords that best describe the content of the paper.

REFERENCES

In the text, references should be cited by author and year and listed chronologically (e.g. Smith, 1964; Jones *et al.*, 1998; Smith & Tan, 2000). For both Malay and English paper, all references must be listed in English. Title of non-English articles should be translated to English.

The list of references should only include articles cited in the text. The list should be arranged in alphabetical order. Please ensure that the reference list is complete and the bibliographical details are accurate. The references should be in the following manner:

Journal articles:

Suntharalingam, T., 1968. Upper Palaeozoic stratigraphy of the area west of Kampar, Perak. Geol. Soc. Malaysia Bull., 1, 1-15.

Hutchison, C.S., 1989. Geological Evolution of South-east Asia. Clarendon Press, Oxford. 368 n

Chapter of books and Symposium volumes:

Hosking, K.F.G., 1973. Primary mineral deposits. In: Gobbett, D.J. and Hutchison, C.S. (Eds.), Geology of the Malay Peninsular (West Malaysia and Singapore). Wiley-Interscience, New York, 335-390.

Article in Malay:

Lim, C.H. & Mohd. Shafeea Leman, 1994. The occurrence of Lambir Formation in Ulu Bok Syncline, North Sarawak. Geol. Soc. Malaysia Bull., 35:1-5. (in Malay with English abstract)

TABLES

All tables should be cited in the text and numbered consecutively. Tables should have a title and a legend explaining any abbreviation or symbol used. Each table must be printed on a separate piece of paper. Do not insert the tables within the text. Data in tables should be aligned using tab stops rather than spaces. Avoid excessive tabulation of data.

ILLUSTRATIONS

Please make sure that all illustrations are useful, necessary and of good quality. A maximum of ten (10) illustrations (photographs, graphs and diagrams) are allowed and these should be cited in the text and numbered consecutively as Figures. The papers are usually published in black-andwhite but it may sometimes be possible to include colour figures at the author's expense. The scales for maps and photomicrographs should be drawn on the figure and not given as a magnification. Originals should not be greater than A4 size and annotations should be capable of being reduced down to 50 percent. The caption should be listed on a separate piece of paper. Do not insert the illustration within the text.

SUBMISSION OF ELECTRONIC FILES

Authors are required to submit electronic files together with three hardcopies of their papers. Submission should be made using CD-ROM. The CD-ROM should be accompanied with a listing of all files and the software (name and version) used. The file names should reflect the content of the files (e.g. Ali_Fig1.tif). Please make sure that the files and the hardcopies are the same.

PREFERRED SOFTWARE

Text: Microsoft Word. Please save in two versions, Word (.doc) and Rich Text Format (.rtf). Do not insert tables and illustration within the text.

Tables: Microsoft Word or Microsoft Excel. Please submit as separate files.

Illustrations – Vector Graphics: Adobe Illustrator (preferred), CorelDraw and Freehand. Final line thickness should be at least 0.5 point or 0.17 mm. For other software, please submit one copy in the native file format and export one copy as a PDF file with all fonts embedded and one copy as a high resolution TIFF or JPEG image.

Photographs or bitmap (raster) images: Adobe Photoshop. Please save as TIFF or PSD files. Save/scan line art at 600 to 1200 dpi and greyscale figures at 300 to 600 dpi. High resolution JPEG, TIFF or GIF files from other sources are also acceptable. The resolution must be high enough for printing at 300 dpi.

REPRINTS

Twenty five copies of each article published are supplied free of charge. Additional reprints are available at cost price provided that orders are placed prior to publication. Authors will also received a softcopy of the article published in .pdf format.

WARTA GEOLOGI PERSATUAN GEOLOGI MALAYSIA

Newsletter of the Geological Society of Malaysia

Jilid 36, No. 2 • Volume 36, No. 2 • April-June 2010

KANDUNGAN (CONTENTS)

PERTEMOAN PERSATUAN (Meetings of the Society)	
44 $^{\scriptscriptstyle ext{TH}}$ Annual General Meeting & Annual Report 2010	33
Minutes of the 43 rd Annual General Meeting	35
President's Report	38
Secretary's Report	39
Assistant Secretary's Report	46
Editor's Report	49
Honorary Treasurer's Report	50
Auditor's Report	51
Announcement of New Council For 2010/2011	63
Dr. Nur Iskandar Taib: Tertiary-Quaternary volcanism in the Sarawak interior, and its implications for the continuing tectonic history of Borneo	68
National Geoscience Conference 2010	69
Opening Address by Menteri Besar Selangor, YAB Tan Sri Dato' Seri Abdul Khalid Bin Ibrahim	70
Programme	72
Abstracts	78
Malam Airtanah 2010	145
BERITA-BERITA PERSATUAN (News of the Society)	
Keahlian (Membership)	146
BERITA LAIN (Other News)	
Talk organized by Total E&P Malaysia and KL Explorationists: Paul Tapponnier — "Earthquake & Tsunami Hazard in Southeast Asia – Where do we Stand?"	147
34 th International Geological Congress: First Circular	148
Uncoming Events	149

Published by the GEOLOGICAL SOCIETY OF MALAYSIA
Department of Geology, University of Malaya, 50603 Kuala Lumpur, MALAYSIA
Tel: 603-7957 7036 Fax: 603-7956 3900 E-mail: geologicalsociety@gmail.com